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Abstract

An aggregation model is a kind of model used to show the dynamics of the

distribution of the population of organisms. Mathematically, we can use a partial

differential equation to model the density of an organism at different times and

locations. In this paper, we are going to look at a 2+1-dimensional nonlinear and

nonlocal aggregation model proposed by Fetecau [8] with an adaptation of a

saturation function to the nonlinear term. The nonlinear term represents the

interaction between an individual and its neighbours. The saturation function

can suppress or amplify the interaction at a low or high level depending on the

values of some parameters in the saturation function. We will explore the

behaviour of the model with different saturation functions applied.

Keywords: Aggregation Model, Saturation function, Partial Differential

Equation
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Chapter 1

Introduction

In nature, many organisms prefer to live and move in groups. Animal grouping

behaviour is also an important topic in both biological and mathematical fields.

Many organisms choose to live in groups since it can help them to overcome many

difficulties that might be fatal if they live individually [6]. In the sky, there are

many bird species tend to form a flock for foraging or migration[9]. In the water,

many fishes have a schooling behaviour in which they swim in groups to defend

themselves against predators and reduce energy costs for swimming [7, 2]. On the

land, many mammals such as kangaroos form groups of different sizes which is

beneficial for predator detection and information exchange [4]. It is important to

understand and predict any collective behaviour of animals. Since this

information can be used to protect these animals and also be able to prepare if

the collective behaviour may cause damage to the environment[10].

There are different ways to build an aggregation model to study the collective

behaviour of different organisms. One way is to simulate the movement of each

individual in the group. In the individual-based models, the movement of each
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individual can be determined by formulating the decision rules on how to interact

with its neighbours[13].

In this study, we are going to investigate the collective motion of organisms using

another modelling method, which the general density of the population at

different locations are calculated by setting up a Partial Differential Equation

(PDE) instead of simulating the motion of every individual to simulate the

behaviour of the groups. In a previous study by Eftimie et al, a PDE which

simulates the movement of the organisms in 1-dimension is established in (1.0.1).

∂tu
+(x, t) + ∂x

(
γu+(x, t)

)
= −λ+u+(x, t) + λ−u−(x, t)

∂tu
−(x, t)− ∂x

(
γu−(x, t)

)
= λ+u+(x, t)− λ−u−(x, t)

(1.0.1)

In the system, u+ represents the density moving to the right and u− represents

the density moving to the left. The variables x and t stand for the position and

time. The parameter γ is the speed of movement. There is a non-linear term λ±

which represents the turning rate result from the interaction with neighbours. λ+

represents the turning rate from right to left and λ− represents the turning rate

from left to right. There are three kinds of interaction forces on an individual

generated by its neighbours: attraction,repulsion and alignment. The type of

social force generated by a neighbour is determined by the distance from the

individual to the neighbour.

In this thesis, we will investigate a two-dimensional aggregation model with two

types of interaction forces: attraction and repulsion. The model is based on

Fetecau’s research [8] with an additional adaptation on the non-linear interaction

term. Then we are going to numerically solve the new system using a
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combination of the spectral method and exponential time differencing method.

Finally, we will compare the results between the original Fetecau’s model and the

model with non-linear adaptation to see how the adaptation term influences the

system behaviour.
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Chapter 2

Aggregation Model with Saturated

Turning Term

In this section, the main content is how to make an adaptation of a saturation

function to a two-dimensional aggregation model conducted by Fetecau [8]. I will

start with a brief description on Fetecau’s model, followed by our new adaptation

to the non-linear part of the model.

2.1 Introduction to Fetecau’s Model

In Fetecau’s paper [8], the model is described as:

∂tu(ϕ,X, t)+γeϕ·∇Xu(ϕ,X, t) = −λ(ϕ,X)u(ϕ,X, t)+

∫ π

−π

T
(
ϕ, ϕ′, X

)
u
(
ϕ′, X, t

)
dϕ′

(2.1.1)

In this model, there are four terms which represent different actions of the density

u at the location X = (x1, x2) within the range [−Lspace

2
, Lspace

2
] facing at angle

ϕ ∈ [−π, π] at time t.
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We first look at the first term, ∂tu(ϕ,X, t), which represents the change of density

u over time t. Then if we look at the second term, γeϕ · ∇Xu(ϕ,X, t), where

eϕ = (cos(ϕ), sin(ϕ)), represents the how the density changes as the individuals at

the location X moves in the direction ϕ with speed γ. These two terms form the

linear part of the model.

The right-hand side of the model is non-linear which is also called the interaction

terms. These two terms are the result of the density change from the interaction

with neighbours. The third term −λ(X,ϕ)u(ϕ,X, t)represents the density move

out of the position X at angle ϕ, where λ(X,ϕ) is the reorientation function. The

last term
∫ π

−π
T (ϕ, ϕ′, X)u (ϕ′, X, t) dϕ′is the density which moves into X at ϕ.

The function T (ϕ, ϕ′, X) is a turning function which represents the turning rate

of changing from direction ϕ′ to ϕ at X.

Figure 2.1: The distance kernel indicating the neighbour area
which an individual will be attracted or repelled with an individ-

ual centered in the middle
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The turning function is represented as:

T (ϕ, ϕ′, X) = Ta(ϕ, ϕ
′, X) + Tr(ϕ, ϕ

′, X) (2.1.2)

Tj(ϕ, ϕ
′, X) = qj

∫
R2

∫ π

−π

Kd
j (X − S)Ko

j (ϕ
′, X − S)wj

(
ϕ, ϕ′, X − S

)
u(S, θ, t)dθdS

(2.1.3)

where qj is a constant stands for the strength of the turning function.

To explain the turning function Tj(ϕ, ϕ′, X)and the reorientation function

λ(X,ϕ), we first define the distance kernel Kd
j and the orientation kernel Ko

j for

both attractive or repulsive interactions (j = a, r). The distance kernel Kd
j

represents how far the sights of individuals can reach, which is represented in

Figure 2.1. Usually, individuals do not like their neighbours to be too close to

them, thus the repulsion distance kernel is the area directly surrounding the

individual. The attraction distance kernel is the direct opposite, where an

individual does not want to stay too far away from their neighbour, thus the

attraction distance kernel is placed at some distance from the center. Let X be

the individual’s position and S be the neighbour’s position and X − S = (s1, s2),

then the distance kernel can be written as:

Kd
j (X − S) =

1

Aj

e
−
(√

s21+s22−dj

)2
/m2

j (2.1.4)

where j = a, r represents whether the distance kernel is for attraction or

repulsion, and Aj = πmj

(
mje

−d2j/m
2
j +

√
πdj +

√
πdj erf

(
dj/mj

))
is a constant

makes
∫
R2 K

d
j d(X − S) = 1. In (2.1.4), dj is the interaction range and the mj is

the width of the interaction range. In Figure 2.2 it shows the Kd
a and Kd

r with
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the same mj but different dj.

(a) the Repulsion Distance Kernel when
dr = 0 and mr =

π
8

(b) the Attraction Distance Kernel when
da = π

4 and ma = π
8

Figure 2.2: the Distance Kernel for Attraction and Repulsion with
individual located at the center

The other kernel is the orientation kernel, Ko
j , which depends on the individual’s

angle ϕ′ and the angle between the individual’s and neighbour’s position ψ. The

angle ψ can be calculated as

cosψ =
s1√
s21 + s22

, sinψ =
s2√
s21 + s22

(2.1.5)

Then the orientation kernel for attraction and repulsion is:

Ko
a(ϕ

′ − ψ) =
1

2π
(− cos(ϕ′ − ψ) + 1) (2.1.6)

Ko
r (ϕ

′ − ψ) =
1

2π
(cos(ϕ′ − ψ) + 1) (2.1.7)

where for attraction, the orientation kernel maximizes when ψ is at the opposite

of ϕ′ (ϕ′ − ψ = π); for repulsion, the orientation kernel maximizes when ψ is close



Chapter 2. Aggregation Model with Saturated Turning Term 8

to the angle ϕ′ (ϕ′ − ψ = 0). Then the total kernel for attraction and repulsion is:

Kj(ϕ
′, X − S) = Kd

j (X − S)Ko
j (ϕ

′, X − S) (2.1.8)

Another component of the Turning function is the probability function

wj(ϕ, ϕ
′, X − S). This gives the probability of the individuals moving from ϕ′ to ϕ

with the interaction between their neighbours.

wj(ϕ, ϕ
′, X − S) = gσ

(
ϕ′ − ϕ− κj

(
sin(ϕ′ − ψ)

))
(2.1.9)

where

gσ(θ) =
1√
πσ

∑
z∈Z

e−(
θ+2πz

σ )
2

, θ ∈ (−π, π) (2.1.10)

is an approximation of periodic Gaussian function with 0 < κa ≤ 1 and

−1 ≤ κr < 0. The value of |κj| represents the influence of the neighbours and σ

represents the width of the probability function. We can combine the Kernel and

probability function to form a new function

Kwj(ϕ, ϕ
′, X − S) = Kj(ϕ

′, X − S)wj

(
ϕ, ϕ′, X − S

)
(2.1.11)

Thus, the turning function is a convolution over the spacial parameter

X = (x1, x2). Let
∫ π

−π
u(S, θ, t)dθ = U(S, t), the turning function can be rewritten

as:

Tj
(
ϕ, ϕ′, X

)
= qj

∫
R2

Kwj

(
ϕ, ϕ′, X − S

)
U(S, t)dS (2.1.12)
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with qj represents the strength of the specific attractive or repulsive turning

functions. The total turning function is

T
(
ϕ, ϕ′, X

)
= Ta

(
ϕ, ϕ′, X

)
+ Tr

(
ϕ, ϕ′, X

)
(2.1.13)

For the reorientation term λ(ϕ,X), it can also be written in terms of the turning

function, where

λ(ϕ,X) = λa(ϕ,X) + λr(ϕ,X) (2.1.14)

λj(ϕ,X) =

∫ π

−π

Tj
(
ϕ, ϕ′, X

)
dϕ (2.1.15)

which represents the total volume changing away from the original angle ϕ′.

2.2 Adaptation to Saturation in the Interaction

Term

In addition to the original model, there is a new adaptation, a new Saturation

function S(x) added to the Turning function. Therefore, the non-linear

interaction term N(ϕ,X) becomes

N(ϕ,X) = −λ′(ϕ,X)u(ϕ,X, t) +

∫ π

−π

S
(
T
(
ϕ, ϕ′, X

))
u
(
ϕ′, X, t

)
dϕ′

= −
∫ π

−π

S
(
Tj
(
ϕ, ϕ′, X

))
dϕu(ϕ,X, t) +

∫ π

−π

S
(
T
(
ϕ, ϕ′, X

))
u
(
ϕ′, X, t

)
dϕ′

(2.2.1)
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In this paper, the saturation function is calculated in the form of

S(T ) =
H

2

(
1 + tanh

(
T − µ

σ

))
(2.2.2)

There are three parameters in the saturation function, which are H, µ and σ. H

represents the maximum value of the function, µ relates the midpoint of the

function, and σ stands for the width of the function. By applying the saturation

function, it simulates the scenario where sometimes an individual does not prefer

to interact with its neighbours and limits the influence of the interaction term or

there is a stimulus during the interaction.

Figure 2.3: The saturation function (2.2.2) when H = 1.0, µ = 1.0
with σ = 0.8, 1, 1.2

In Figure 2.3, it shows a plot of a saturation function. From the plot, we can tell

that there are three main sections in a saturation function: maximum section,

slope section and minimum section. On the right side of the picture, we can see

that the value reaches its maximum at the value H = 1.0 with a very small slope.
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Similarly, on the left side of the plot, the function also approaches its minimum

value 0 with a decreasing slope approaching 0. In the middle part of the section,

we can see that with different values of σ, the slope is also different. With a

smaller width σ, the slope section becomes steeper and with a greater width σ,

the slope becomes smaller.

To make the mass conserved over time, we also need to change the λ(ϕ,X) since

the saturation function is applied to the turning function T (ϕ, ϕ′, X). Now if we

integrate over the space and angle to the model with saturation term, the change

of the total mass U(t) can be written as

dU

dt
= −

∫
R2

∫ π

ϕ′=−π

λ′
(
ϕ′, X

)
u
(
ϕ′, X, t

)
dϕ′dX

+

∫
R2

∫ π

ϕ=−π

∫ π

ϕ′=−π

S
(
T
(
ϕ, ϕ′, X

))
u
(
ϕ′, X, t

)
dϕ′dϕdX

(2.2.3)

To make the mass conserved, where dU
dt

= 0, then the λ′ would become:

λ′
(
ϕ′, X

)
=

∫ π

ϕ=−π

S
(
T
(
ϕ, ϕ′, X

))
dϕ (2.2.4)

Therefore, the new Model with the saturation term is

∂tu(ϕ,X, t)+γeϕ·∇Xu(ϕ,X, t) = −λ′(X,ϕ)u(ϕ,X, t)+
∫ π

−π

S
(
T
(
ϕ, ϕ′, X

))
u
(
ϕ′, X, t

)
dϕ′

(2.2.5)
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Chapter 3

Exponential Time Differencing

Scheme

In this chapter, the main time stepping method is introduced and applied to solve

the equation over time. In this study, a method named Exponential Time

Differencing Scheme and developed by Matthews and Cox is applied [3].

Exponential Time Differencing Scheme is applied to solve an ODE involving both

linear and non-linear terms, which can be generalized as:

du(t)

dt
= Lu(t) +N(u(t), t) (3.0.1)

where L is a linear operator acting on u(t) and N(u(t), t) is the non-linear term.

To solve the ODE in (3.0.1), we first state an integrating factor µ = exp(−Lt)

and multiply both sides of (3.0.1) by µ to get a new equation

d

dt
(exp(−Lt)u(t)) = exp(−Lt)N(u(t), t) (3.0.2)
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Suppose at the current time step t′, the non-linear term N(u(t′), t′) is known as a

constant and if we integrate both sides over (t′, t′ +∆t), the equation (3.0.2)

becomes:

exp(−Lt)u(t)
∣∣∣t′+∆t

t′
= N(u(t′), t′)

∫ t′+∆t

t′
exp(−Lt)dt (3.0.3)

Finally, the density at the new time step u(t′ +∆t) can be calculated as

u(t′ +∆t) = exp(L∆t)u(t′) + (exp(L∆t)− 1)N(u(t′), t′) (3.0.4)

3.1 Calculating the Transportation Term

This section will mainly be focusing on simulating the transportation term using

Exponential Time Differencing (ETD) scheme. For the interaction terms all equal

to zero, the equation can be simplified as

ut + γeϕ · ∇xu = 0 (3.1.1)

To simulate the gradient of u over the space, we can apply the semidiscrete

Fourier transform. To simplify the function into a non-dimensional setting, we

choose the range of the space [−Lspace

2
, Lspace

2
] with Lspace = 2π. Then we can

apply the Fourier transform:

ûk1,k2(ϕ, t) = α

∫ π

x2=−π

∫ π

x1=−π

u (ϕ, x1, x2, t) exp
(
−i [k1x1 + k2x2]

)
dx1 dx2 (3.1.2)
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where k1, k2 are the wave number corresponding to x1, x2. The inverse Fourier

transform is

u (x1, x2, ϕ, t) = β

N
2∑

k1=−N
2

N
2∑

k2=−N
2

ûk1,k2(ϕ, t) exp
(
i [k1x1 + k2x2]

)
(3.1.3)

where N is the discrete grid number and α, β are the normalization term during

the transformation. To solve the function numerically, we are going to apply the

spectral method where we can apply Fast Fourier Transform and Inverse Fast

Fourier Transform over a space grid with grid number N [12]. Then we can get a

coefficient matrix which does not change over time. The calculation of the

coefficient matrix will be explained in the following paragraphs.

If Fourier transform over the space is applied to (3.1.1), then ∇xû = (ik1û, ik2û).

Therefore, the equation becomes

∂ûk1,k2(ϕ, t)

∂t
+ iγ

[
k1 cos(ϕ) + k2 sin(ϕ)

]
ûk1,k2(ϕ, t) = 0 (3.1.4)

Suppose that k1, k2 be known constants, and discretize ϕ over a grid between

[−π, π] with an even number m points such that ϕj =
2π
m
j with j = −m

2
· · · m

2
− 1,

the linear operator at the angle ϕj would be L = −iγ[k1cos(ϕj) + k2sin(ϕj)]. If

we define ûk1,k2,j ≡ ûk1,k2
(
ϕj, t

)
, (3.1.4) can be written as an ODE

dûk1,k2,j1(t)

dt
=

m
2
−1∑

j2=−m
2

Mp1,p2ûk1,k2,j2 (3.1.5)

where j1, j2 ∈ (−m
2
, m

2
) and p1 = j1 +

m
2
, p2 = j2 +

m
2

. Then M is a diagonal

matrix having entries Mp1,p2 = L(k1, k2, ϕj1)δj1,j2 with δj1,j2 be the Dirac delta
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function. Then if we omit the known constants k1, k2, the system would become

d

dt



û−m
2

û−m
2
+1

...

ûm
2
−1


=



L(ϕ−m
2
) 0 · · · 0

0 L(ϕ−m
2
+1)

. . . ...
... . . . . . . 0

0 · · · 0 L(ϕm
2
−1)





û−m
2

û−m
2
+1

...

ûm
2
−1


(3.1.6)

where

M =



L
(
ϕ−m

2

)
0 · · · 0

0 L
(
ϕ−m

2
+1

) . . . ...
... . . . . . . 0

0 · · · 0 L
(
ϕm

2
−1

)


(3.1.7)

To solve the system (3.1.6), we can apply the ETD scheme, where we set the

integrating factor µ = exp(−Mt), and the system can be simplified as

d

dt
(exp(−Mt)û) = 0 (3.1.8)

If we integrate both sides over the current time step t′ and the new time step

t′ +∆t to get

exp(−M(t′ +∆t))û(t′ +∆t)− exp(−M(t′))û(t′) = 0 (3.1.9)

the right-hand side remains zero since the non-linear term equals zero. Then to

solve for u(t′ +∆t) the equation becomes

û(t′ +∆t) = exp(M∆t)û(t′) (3.1.10)
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Finally, the inverse Fourier transform (stated in (3.1.3) ) is applied to (3.1.10) to

find the density function u(t′ +∆t) in real space.
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3.2 Simulation of the Transportation Term

In this section, we are going to apply the EDT scheme to an initial condition of u

u0(x1, x2, ϕ) = exp(π(cos(x1) + cos(x2))) (3.2.1)

which is shown in Figure 3.1.

Figure 3.1: The Initial Condition u0(x1, x2, ϕ) = exp(π(cos(x1) +
cos(x2)))

The initial condition u0 stays the same for different ϕ. But as the time variable t

gets larger, since the population is moving toward different directions, the density
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plot is also different at different ϕ (Figure 3.2).
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(a) The Population Density Plot of u(x1, x2, ϕ = −π
2 ) at t = 0.5, 1

(b) The Population Density Plot of u(x1, x2, ϕ = 0) at t = 0.5, 1

(c) The Population Density Plot of u(x1, x2, ϕ = π
4 ) at t = 0.5, 1

Figure 3.2: The Population Density Plot of u(x1, x2, ϕ) with only
transportation term at ϕ = −π

2 , 0,
π
4 when t = 0.5, 1
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We can also look at the whole population density plot over different angles, where

define the whole population U(x1, x2, t) as

U(x1, x2, t) =

∫ π

−π

u(x1, x2, ϕ, t)dϕ (3.2.2)

Also, let the arrows at the position x1, x2 represent the angle ϕmax with the

largest population. The thickness of the arrows varies with different density,

where the thicker arrows represent a greater magnitude of density at

u(x1, x2, ϕmax, t). The plot is shown in Figure 3.3. In Figure 3.3, the initial

population is concentrated in the center. Then the population starts to spread

out from the center toward different directions.
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(a) when t = 0 (b) when t = 0.2

(c) when t = 0.4 (d) when t = 0.6

(e) when t = 0.8 (f) when t = 1.0

Figure 3.3: the Total Population Density U(X, t) with only trans-
portation term when t = 0, 0.2, 0.4, 0.6, 0.8 and 1.0 with arrows rep-
resenting the angles with the highest density at position (x1, x2)
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3.3 Applying EDT to the Interaction Term

This section will show how to apply the ETD scheme to the interaction term,

which is the non-linear part in the equation.

N(u(t), t) = −λ′(ϕ, x1, x2)u (ϕ, x1, x2, t)+
∫ π

ϕ′=−π

S
(
T
(
ϕ, ϕ′, x1, x2

))
u
(
ϕ′, x1, x2, t

)
dϕ′

(3.3.1)

Similar to the transportation term, to apply the ETD method, we need to

transform the interaction term into Fourier space over the space variable (x1, x2),

which can be written as

N̂k1,k2(t) = α

∫ π

x2=−π

∫ π

x1=−π

N (ϕ, x1, x2, t) exp
(
−i [k1x1 + k2x2]

)
dx1dx2 (3.3.2)

Then the equation in the Fourier space becomes

∂ûk1,k2(ϕ, t)

∂t
+ iγ

[
k1 cos(ϕ) + k2 sin(ϕ)

]
ûk1,k2(ϕ, t) = N̂k1,k2(t) (3.3.3)

which can be approximated by set an intergrating factor µ = exp(−Mt) where

the matrix M is the same matrix in (3.1.5). Then the system becomes

d

dt
(exp(−Mt)û) = exp(−Mt)N̂k1,k2(t) (3.3.4)
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Then if we integrate both sides over the current time step t′ and the new time

step t′ +∆t, the equation becomes

exp(−M [t+∆t])û(t+∆t)− exp(−Mt)û(t) =

∫ t+∆t

t′=t

exp
(
−Mt′

)
N̂k2,k2

(
t′
)
dt′

(3.3.5)

To approximate the non-linear term, one thing is to make the assumption that the

function N̂k1,k2 (t) = N̂k1,k2 +O(∆t), which is a constant value of the interaction

term at a specific time t. Then the integration part can be calculated as

∫ t+∆t

t′=t

exp
(
−Mt′

)
N̂k1,k2

(
t′
)
dt′ =

∫ t+∆t

t′=t

exp
(
−Mt′

)
N̂k1,k2dt

′ +O(∆t)

= −M−1
(
exp(−M(t+∆t))− exp(−M(t))

)
N̂k1,k2 +O(∆t)

If the result is substitute into (3.3.5), then

û(t+∆t) = exp(M∆t)û+M−1(exp(M∆t)− I)N̂k1,k2 +O(∆t) (3.3.6)

To simplify the expression, we can define two diagonal matrices A and B so that

the diagonal entries are

Aj,j = exp
(
−iγ∆t

[
k1 cos(ϕj) + k2 sin(ϕj)

])
(3.3.7)

Bj,j =
exp

(
−iγ∆t[k1cos(ϕj) + k2sin(ϕj)]

)
− 1

−iγ[k1cos(ϕj) + k2sin(ϕj)]
(3.3.8)



Chapter 3. Exponential Time Differencing Scheme 24

To avoid dividing by 0 when k1, k2 = 0 in matrix B, we multiply the entry by 1 in

the form of

cj,j = exp(
−∆t

2
Mj,j)

−1 exp(
−∆t

2
Mj,j)

=
exp

(
i
2
γ∆t[k1cos(ϕj) + k2sin(ϕj)]

)
exp

(
i
2
γ∆t[k1cos(ϕj) + k2sin(ϕj)]

) (3.3.9)

If we let Qj,j = −[k1cos(ϕj) + k2sin(ϕj)], then the matrix Bj,j can be rewritten as

Bj,j =
exp

(
iγ∆tQj,j

)
− 1

iγQj,j

·
exp

(
− i

2
γ∆tQj,j

)
exp

(
− i

2
γ∆tQj,j

)
= ∆t sinc(

1

2
γ∆tQj,j) exp(

i

2
γ∆tQj,j)

(3.3.10)

with the sinc function

sinc(
1

2
γ∆tQj,j) =

sin(1
2
γ∆tQj,j)

1
2
γ∆tQj,j

=
exp

(
i
2
γ∆tQj,j

)
− exp

(
− i

2
γ∆tQj,j

)
iγ∆tQj,j

(3.3.11)

Then finally, we can find the density function in Fourier space ûk1,k2(t+∆t) by

ûϕ,k1,k2(t+∆t) ≈ Aûϕ,k1,k2(t) +BN̂ϕ,k1,k2(t) (3.3.12)

Finally, the density function at new time step u(ϕ, x1, x2, t+∆t) can be

calculated by Inverse Fourier Transform

u(ϕ, x1, x2, t+∆t) =
1

N2

N
2∑

k1=−N
2

N
2∑

k2=−N
2

ûk1,k2(ϕ, t) exp
(
i [k1x1 + k2x2]

)
(3.3.13)
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3.4 Calculating the Interaction Term

As indicated in the last section, the interaction term is

N(u(t), t) = −λ′(ϕ, x1, x2)u (ϕ, x1, x2, t)+
∫ π

ϕ′=−π

S
(
T
(
ϕ, ϕ′, x1, x2

))
u
(
ϕ′, x1, x2, t

)
dϕ′

(3.4.1)

with

Tj
(
ϕ, ϕ′, X

)
= qj

∫
R2

Kd
j (X − S)Ko

j (ϕ,X − S)wj(ϕ, ϕ
′, X − S)U(S, t)dS

λj(ϕ,X) =

∫ π

−π

Tj
(
ϕ, ϕ′, X

)
dϕ

(3.4.2)

Then the system can be simplified as

∂tu(ϕ,X, t) + γeϕ · ∇Xu(ϕ,X, t) = N(u(ϕ,X, t)) (3.4.3)

with X ∈ [−π, π]2. Then if we find a scale for space Lscale and time Tscale such

that X̃ = Lscale(x1, x2) and t̃ = Tscale(t). Then if we substitute the

non-dimensionalized variables to (3.4.3), we will get

1

Tscale
∂t̃u(ϕ, X̃, t̃) +

γ

Lscale

eϕ · ∇X̃u(ϕ, X̃, t̃) = N(u(ϕ, X̃, t̃)) (3.4.4)

To simplify the function, we can choose Tscale = Lscale

γ
with Lscale = γ = 1. Then,

Tscale = 1 and also there is no need to rescale other parameters.

To compute the Turning function, we need to use the Convolution Theorem.

First, we combine the Kernels Kd(X − S), Ko(X − S, ϕ) and the probability

function wj(ϕ, ϕ
′, X − S) to form a new term Kwj(ϕ, ϕ

′, X − S) which does not
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change over time. The turning function is a convolution over space

Tj
(
ϕ, ϕ′, X

)
= qj

∫
R2

Kwj(ϕ, ϕ
′, X − S)U(S, t)dS (3.4.5)

Then, we can apply the Fourier transform over the space term X = (x1, x2).

T̂j
(
ϕ, ϕ′, k1, k2

)
=

∫
R2

Tj
(
ϕ, ϕ′, x1, x2

)
exp(−ix1k1 − ix2k2)dx1dx2 (3.4.6)

where k1, k2 are the wave numbers. Let p1 = x1 − s1, p2 = x2 − s2, q1 = s1, q2 = s2,

then x1 = p1 + q1, x2 = p2 + q2

T̂j
(
ϕ, ϕ′, k1, k2

)
= qj

∫
R2

∫
R2

Kwj(ϕ, ϕ
′, p1, p2)U(q1, q2, t)dq1dq2 exp(−ix1k1 − ix2k2)dx1dx2

= qj

∫
R2

∫
R2

Kwj(ϕ, ϕ
′, p1, p2)U(q1, q2, t) exp(−i(q1 + p1)k1 − i(q2 + p2)k2)dq1dq2dp1dp2

= qj

∫
R2

U(q1, q2, t) exp(−iq1k1 − iq2k2)dq1dq2

∫
R2

Kwj(ϕ, ϕ
′, p1, p2) exp(−ip1k1 − ip2k2)dp1dp2

= qjK̂wj(ϕ, ϕ
′, k1, k2)Û(k1, k2, t)

(3.4.7)

Then we can use inverse Fourier transform to find Turning function

Tj
(
ϕ, ϕ′, x1, x2

)
=

∫
R2

T̂j
(
ϕ, ϕ′, k1, k2

)
exp(ix1k1 + ix2k2)dk1dk2 (3.4.8)

With known turning function, the saturation function can be applied and finally,

calculate the interaction term with the most updated density u(ϕ, ϕ′, X, t).

With the turning function calculated in the real space, we can apply our

saturation function S(T ) to the it. Then for the moving in term, we can combine
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the saturated turning term with the density term

Suj
(
ϕ, ϕ′, x1, x2

)
= S

(
T
(
ϕ, ϕ′, x1, x2

))
u
(
ϕ′, x1, x2, t

)
(3.4.9)

If we take the Fourier transform in the angle ϕ′, with corresponding wave number

k3, we get

Ŝuj(ϕ, k3, X) = α

∫ π

ϕ′=−π

Suj(ϕ, ϕ
′, X) exp(−ik3ϕ′)dϕ′ (3.4.10)

Thus we can compute the integral over ϕ′ by compute the Fast Fourier Transform

over the term ϕ′, and then the integral is equal to the Fourier transform of Suj

when wave number k3 = 0 with normalization term α.

∫ π

ϕ′=−π

Suj(ϕ, ϕ
′, X)dϕ′ = αŜuj(ϕ, 0, X) (3.4.11)

Similarly, we can calculate the moving out term λj(ϕ,X) by

λ′j(ϕ,X) = αŜ(T )(0, ϕ′, X) (3.4.12)

where Ŝ(T )(0, ϕ′, X) is the Fourier transform of the function S(T )(0, ϕ′, X) over

then angle space ϕ.
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Chapter 4

Results

In this section, we are going to show the results with the saturated interaction

term. There are a total of two initial cases we have tested on. The first one is one

single Gaussian bump in the center and the other one is two Gaussian bumps.

Also, different saturation functions are applied to different initial conditions. The

plots shown are the total density U(x1, x2, t), which is calculated by

U(x1, x2, t) =
2π
N

∑j=64
ϕj=0

u(ϕj, x1, x2, t) where N = 64 is the number of grid points

during the simulation. The reason to choose N = 64 is for balancing the efficiency

and accuracy of the implementation. For the time step value dt, we let dt = 0.01

in consideration of stability and efficiency throughout the tests. Please check

Appendix B for the convergence test and asymmetry test of the ETD scheme.

The videos about the dynamics of the aggregation model are referred in

Appendix C. When saturation function is applied, the histograms of the values of

turning functions are demonstrated in Appendix A. In each histogram, there is a

peak of the occurrences of very small turning rate. This is actually the turning

rate at the positions where there is no change of the density within the distance
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kernels at certain positions. During the analysis, we would focus on the turning

rate with a greater magnitude and how it would be affected by the application of

different saturation functions.

4.1 Initial condition 1: One Gaussian bump

The first initial condition is only one Gaussian bump at the center, and the rest

area has an evenly distributed density

u0(ϕ,X) =


10000 · exp(−(x21 + x22)) ϕ = −π, 0

100 otherwise
(4.1.1)

If there is no interaction term in effect, the model is linear and the Gaussian bump

is moving constantly toward the angle ϕ at speed γ = 1, as shown in Figure 4.1.
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(a) when t = 0 (b) when t = 1

(c) when t = 2 (d) when t = 3

(e) when t = 4 (f) when t = 5

Figure 4.1: the Total Population Density U(x1, x2, t) of the model
with initial condition (4.1.1) when only transportation term is in
effect at t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the

angles with the highest density at the position (x1, x2).
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Then, the interaction term is added to the model. For the interaction parameters,

we set attraction to be dominant, where qa = 2, ma = 0.3, da = 0.5; for the

repulsive kernels, we set qr = 0.5, mr = 0.2, dr = 0. For the probability function

w, we set the width to be σ = 1 and |κj| = 1. If there is no saturation function

applied to the model, the system behaviour is shown in Figure 4.2. From the

figures, the two groups moving in opposite directions start to interact with each

other by changing their directions, which leading to a disperse in all directions

from the center bump.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.2: the Total Population Density U(x1, x2, t) when no
saturation function is applied to the turning function with qa =
2, qr = 0.5 of the model with initial condition (4.1.1) at t =
0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with the

highest density at the position (x1, x2).
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Then we apply the saturation function to the interaction term. In this case, we

applied

S(T ) =
5

2
(1 + tanh(

T − 5

1.2
)) (4.1.2)

where the maximum value H = 5, and centred at µ = 5 with the width σ = 1.2.

The plot of the saturation function is shown on Figure 4.3.

Figure 4.3: The Saturation Function (4.1.2) where H = 5, µ = 5
and σ = 1.2.

And then the model with saturated interaction term is shown below. From the

figures, we can see that at the beginning when t is small, many individuals are

interacting with their neighbours and change their directions. But as t increased,

the effect of the interaction term starts to decrease due to the effect of the

saturation term. As shown in the histograms in Figure A.1, when t = 0, there is a

long tail where T (ϕ, ϕ′, X) > 4. By applying the saturation function (4.1.2), these

turning rates are not completely suppressed but are adjusted to T (ϕ, ϕ′, X) = 5.

When t = 2.5, the turning rates are all suppressed by the saturation function to a
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value near 0. Therefore, the transportation term starts to dominate the model

and the interaction between the individuals are decreased.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.4: the Total Population Density U(x1, x2, t) when sat-
uration function (4.1.2) is applied to the turning function with
qa = 2, qr = 0.5 of the model with initial condition (4.1.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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4.2 Initial condition 2: Two Gaussian bumps

In this section, the initial condition has two Gaussian bumps with different mass

at each bump, where

u0(ϕ,X) =


10000 · exp(−(10 · ((x2 + 0.5)2 + x21))) ϕ = −π

2

5000 · exp(−(10 · ((x1 + 0.5)2 + x22))) ϕ = −π

100 otherwise

(4.2.1)

For the interaction parameters, we set the values to be the same as the previous

example. We first run the model without any saturation function. From Figure

4.5, we can see that at first, the repulsion term is dominant and the two bumps

started to spread out at different angles. However, as time increases, although the

bumps keep spreading out, there is still an attraction force between the

individuals such that they finally form one big bump instead of two bumps at the

beginning.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.5: the Total Population Density U(x1, x2, t) when no
saturation function is applied to the turning function with qa =
2, qr = 0.5 of the model with initial condition (4.2.1) at t =
0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with the

highest density at the position (x1, x2).
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Now if we apply the same saturation function in (4.1.2), the result shows in

Figure 4.6, which seems like there is only the transportation term in effect with

very little repulsive interaction force. The reason is that for this initial condition,

the range of the turning function is [0, 3.59], as shown in Figure A.3. When we

apply saturation function (4.1.2), most of the turning function values are in the

minimum section and finally transform into values very close to zero.

If we would like to establish a model with a similar behaviour shown in Figure 4.4

where the interaction between the individuals are not completely suppressed, we

can apply another saturation function such that the turning function still affects

the model to interact with its neighbours.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.6: the Total Population Density U(x1, x2, t) when sat-
uration function (4.1.2) is applied to the turning function with
qa = 2, qr = 0.5 of the model with initial condition (4.2.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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Therefore, we applied a new saturation function

S(T ) =
2

2
(1 + tanh(

T − 2

1
)) (4.2.2)

which shown in Figure 4.7 with H = 2, µ = 2 and σ = 1.

Figure 4.7: The Saturation Function (4.2.2) where H = 2, µ = 2
and σ = 1

By comparing the histograms of the turning rates in Figure A.4 and the

saturation function in Figure 4.7, we can see that for most values of the turning

function, it falls into the slope section in the saturation function. Also, with some

small values of the turning functions, they transform into values close to 0. If we

apply the new saturation function (4.2.2) to the model, the result is shown in

Figure 4.8. From the plots, we can see that at the beginning, the two bumps are

interacting with each other and tending to form one big bump. However, as t

increases, the histograms in Figure A.4 show that many values of the turning
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function fall into the minimum section of the saturation function. As the result,

the individuals stopped interacting with each other but just move in their own

directions.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.8: the Total Population Density U(x1, x2, t) when sat-
uration function (4.2.2) is applied to the turning function with
qa = 2, qr = 0.5 of the model with initial condition (4.2.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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Changing the saturation function is not the only way to change the interaction in

the system. Similarly, we can change the value of qa, qr to simulate the

aggregation under different scenarios. In the following test, we set qa = 4, qr = 1

which is proportional to the original qa, qr with the same initial condition. The

results shown in Figure 4.9 states that the model starts with a similar spreading

out motion as the results in Figure 4.5. Many individuals first change their

directions and then start to aggregate and form a big bump between the two

bumps. However, since the strength of the interaction forces is increased, the

model does not only aggregate faster but also disperses more slowly. This can be

shown by comparing Figure 4.5(c),(d) with Figure 4.9(c),(d). In Figure 4.5(c) and

(d), there is an aggregation motion but we can still see some unevenly distributed

area in the bump. Whereas in Figure 4.9(c) and (d), the model quickly forms a

bump similar to a Gaussian bump and disperses more slowly.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.9: the Total Population Density U(x1, x2, t) when no
saturation function is applied to the turning function with qa =
4, qr = 1 of the model with initial condition (4.2.1) at t =
0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with the

highest density at the position (x1, x2).
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Now if we apply the same saturation function in (4.2.2) to this model, the result

is shown in Figure 4.10. From the plots, it is interesting to see that with the

saturation term applied, the model behaves similar to the model in Figure 4.5,

where no saturation function is applied with smaller qa, qr. One important reason

is that with the increase of the qa, qr, the magnitude of the turning function also

increases. In this example, as shown in Figure A.5 the turning function is in the

range of [0, 7.17]. Therefore, if (4.2.2) is applied, most of the turning function

values fall into the maximum section of the saturation function. Then the

maximum magnitude of the turning function would be decreased to 2, which is a

value closer to the turning function magnitude when qa = 2, qr = 0.5. Also, since

the maximum turning rate equals to 2 when the saturation function (4.2.2) is

applied, if we compare Figure 4.10 with Figure 4.9 where the turning function is

not saturated, the aggregation between the two bumps becomes much slower.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.10: the Total Population Density U(x1, x2, t) when sat-
uration function (4.2.2) is applied to the turning function with
qa = 4, qr = 1 of the model with initial condition (4.2.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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However, if we compare Figure 4.10 and Figure 4.8, where both cases have the

same saturation function and initial function applied, the outcome is distinct. In

Figure 4.10, the interaction term still has relatively significant influences on the

model as t increases, but in Figure 4.8, especially in subplots (e) and (f), the

influence of the interaction term has been largely decreased and the

transportation term has the main effects on the model. The main reason is that

for the case shown in Figure 4.10, at t = 2 and t = 2.5 in Figure A.5, the

maximum of the turning function magnitude is still greater than 2. Therefore, we

can apply another saturation function (4.2.3) to the model such that when the

values of the turning function decrease, they will be transformed into values

closer to 0 by the saturation function.

S(T ) =
6

2
(1 + tanh(

T − 6

1
)) (4.2.3)

where H = 6, µ = 6 and σ = 1 with the plot shown in Figure 4.11.
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Figure 4.11: The Saturation Function (4.2.3) where H = 6, µ = 6
and σ = 1

In Figure 4.12, we can see that in subfigure (a), (b) and (c), there is still some

interaction between the two bumps, but as t increases, the interaction force

decreases and the transportation term starts to dominate the motion. This

behaviour is similar to Figure 4.8 but with different saturation functions applied

due to different interaction force strengths.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.12: the Total Population Density U(x1, x2, t) when sat-
uration function (4.2.3) is applied to the turning function with
qa = 4, qr = 1 of the model with initial condition (4.2.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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We can also apply another saturation function to the system with the same value

of H = 6 and µ = 6, but different width σ = 2.5.

S(T ) =
6

2
(1 + tanh(

T − 6

2.5
)) (4.2.4)

As shown in Figure 4.13, the slope section is less steep than the previous

saturation function in (4.2.3).

Figure 4.13: The Saturation Function (4.2.4) where H = 6, µ = 6
and σ = 2.5

As the new saturation function is applied to the model as shown in Figure 4.14, it

demonstrates that as t increases, although the transportation term dominates the

model, the interaction forces still have some observable influences on the model.

In the subplot (e) and (f), it forms one peak between the original two bumps

whereas, in Figure 4.12, there are always two peaks at −π and −π
2

direction. The

main reason is that since the width σ in (4.2.4) is greater than the σ in (4.2.3),
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then the minimum section of the saturation function is thinner. If we compare

the saturation function in Figure 4.13 with the histograms in FigureA.7, less

values in the turning function are suppressed to approximately zero. Therefore,

as t increases, many saturated magnitudes of the turning function are still greater

than zero and some individuals are still interacting with their neighbours.
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure 4.14: the Total Population Density U(x1, x2, t) when sat-
uration function (4.2.4) is applied to the turning function with
qa = 4, qr = 1 of the model with initial condition (4.2.1) at
t = 0, 0.5, 1.0, 1.5, 2.0 and 2.5. The arrows represent the angles with

the highest density at the position (x1, x2).
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Chapter 5

Conclusions

In a 2+1-dimensional aggregation model, the non-linear interaction part plays a

significant role in the behaviour of the aggregation motion. The interaction part

mainly states the interaction between the individual and the position of their

neighbours for attractive and repulsive motions. In Fetecau’s model, they change

many different parameters to show the different cases of the aggregation model.

For instance, they had adjusted the κj value in the probability function

wj(ϕ, ϕ
′, X − S) to change the weight of the kernel for an individual to change

from its original orientation ϕ′ to a new angle ϕ.

Another way is to directly change the qj term which represents the strength of

attractive or repulsive interaction. In the same system, even if the proportion

between qa and qr remains the same, the outcome is still different. When the

values of qa and qr are different, the behaviour of the systems might be similar to

each other, but the strength of attractive or repulsive force would vary depending

on the value of qj. If a system is attraction dominated, greater qj values would

result in a faster aggregation behaviour of the model.
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In our system, we added another factor, which is the saturation function S(x), to

the turning function in the interaction term, to introduce another way to change

the behaviour of our model. The saturation function S(x) has three parameters:

the maximal height H, the midpoint µ and width σ.

There are three cases that would happen if we add a saturation function to the

model, and all three cases are related to the range of turning function values. The

first case is when most effectual values of the turning function are placed in the

maximum section of the saturation term. Then the system behaviour is highly

dependent on the maximum value of the saturation function. The second case is

when most of the range of the turning function falls into the minimum section,

where most of the turning function values are transferred to values that are really

close to zero. In this case, many individuals in the system do not interact with

their neighbours but maintain the same angle over time. The third case is when

most of the turning function values are in the slope section of the saturation

function. In this case, the behaviour of the system would depend on the value of

width µ in the saturation function. If µ is relatively small, it means that more

turning values would transform into the maximum value H and minimum value

0. If µ becomes larger, then the interaction term will have a greater influence on

the model.

The scenarios above can be used to describe different kinds of aggregation motion

for many organisms in different environment. Many micro-organisms, such as

amoebae (Dictyostelium discoideum), are very sensitive to their environment and

perform collective movements based on the chemical cues they can detect[11].

Also, when the density of a crowd becomes too high, then the aggregation
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movement would stop [1]. In these situations, the adaptation of a saturation

function can used to predict the movement of the total population. Also, with

different values of H in the saturation function, it can also amplify or attenuate

the interaction between individuals. For instance, some bacteria would be more

likely to aggregate and start biofilm formation under stressful survival

conditions[5]. In this case, the interaction between individuals can be amplified

by applying the saturation function with a relatively greater value of H to

simulate the response of bacteria under stress. For this study, there are also some

parts that can be further developed. For instance, in some species, there are also

alignment interaction force which let each individual to turn to the same angle as

their neighbours. In that case, not only the position of the neighbours, but the

angles of neighbours would be considered in the system.

The saturation function can also be further developed. In this study, we used

hyperbolic tangent function as the saturation function. There are also other

increasing and bounded functions which can be applied to the system to simulate

other scenarios for the interaction between different organisms.
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Appendix A

Histogram of Turning Functions
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.1: Turning Function Values for Initial Condition (4.1.1)
with saturation function (4.1.2)
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.2: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.1.2) when qa = 2, qr = 0.5
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.3: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.1.2) when qa = 2, qr = 0.5
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.4: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.2.2) when qa = 2, qr = 0.5
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.5: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.2.2) when qa = 4, qr = 1
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.6: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.2.3) when qa = 4, qr = 1
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(a) when t = 0 (b) when t = 0.5

(c) when t = 1 (d) when t = 1.5

(e) when t = 2 (f) when t = 2.5

Figure A.7: Histogram of Turning Function Values for Initial Con-
dition (4.2.1) with saturation function (4.2.4) when qa = 4, qr = 1
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Appendix B

Truncation Error of Symmetry

during Simulation

To calculate the asymmetry of the model, we set up a symmetric initial condition

u(ϕ, x1, x2) = exp((−(x21 + x22))) (B.0.1)

which is a function with a Gaussian bump in the middle.

Then we calculate the asymmetry along the x-axis with different time step dt and

different grid number N , which can be expressed as

D(N, dt) =
∥u(ϕ, x1, x2)− u(π − ϕ,−x1, x2)∥

∥u(ϕ, x1, x2)∥
(B.0.2)

where the function u(ϕ, x1, x2) is calculated with different grid point number N

and time step dt.
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(a) the semi-log plot of asymmetry
D(N, dt = 0.05) vs. different grid number

N at t = 1
(b) the log-log plot of asymmetry D(N =
64, dt) vs. different time step dt at t = 1

Figure B.1: The plot of asymmetry vs. dt and N of a model
with symmetric initial condition (B.0.1).(A) shows the asymmetry
D(N, dt = 0.05) vs. N . (B) shows the asymmetry D(N = 64,dt)

vs. dt

From the plot B.1, the difference of the asymmetry at t = 1 are generally smaller

than 1016, which is preserved at machine precision.

The convergence test is also conducted for different dt values. The relative error

is calculated as:

E(dt) = ∥udt(ϕ, x1, x2)− udt(π − ϕ,−x1, x2)∥ (B.0.3)

Then with a sequence of different time steps dt = 0.2, 0.1, 0.05, 0.025, 0.0125, the

relative error E(dt) is shown in Figure B.2.



Appendix B. Truncation Error of Symmetry during Simulation 68

Figure B.2: The magnitude of relative error at t = 1 with sym-
metric initial condition (B.0.1)

From Figure B.2, where the slope of the log-log plot approximately equals to 1

which is consistent with the Exponential Time Differencing method which is a

first order simulation method.
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Appendix C

Links of Supplementary Materials

C.1 Movies of the Results

The Movie for Initial Condition (4.1.1) with only transportation term:

https://youtu.be/ej2Segh4A_Y

The Movie for Initial Condition (4.1.1) with No saturation function:

https://youtu.be/nmVe3OsSfCI

The Movie for Initial Condition (4.1.1) with saturation function (4.1.2):

https://youtu.be/ovYIt1Ub0Fg

The Movie for Initial Condition (4.2.1) with No saturation function when

qa = 2, qr = 0.5: https://youtu.be/7bY-WNRRQu8

The Movie for Initial Condition (4.2.1) with saturation function (4.1.2) when

qa = 2, qr = 0.5: https://youtu.be/2m9vNRZEer8

The Movie for Initial Condition (4.2.1) with saturation function (4.2.2) when

qa = 2, qr = 0.5: https://youtu.be/lEkq3u27M2k

https://youtu.be/ej2Segh4A_Y
https://youtu.be/nmVe3OsSfCI
https://youtu.be/ovYIt1Ub0Fg
https://youtu.be/7bY-WNRRQu8
https://youtu.be/2m9vNRZEer8
https://youtu.be/lEkq3u27M2k


Appendix C. Links of Supplementary Materials 70

The Movie for Initial Condition (4.2.1) with No saturation function when

qa = 4, qr = 1: https://youtu.be/tkEJHhlTo1Y

The Movie for Initial Condition (4.2.1) with saturation function (4.2.2) when

qa = 4, qr = 1: https://youtu.be/ayngyuC6iaA

The Movie for Initial Condition (4.2.1) with saturation function (4.2.3) when

qa = 4, qr = 1: https://youtu.be/RDMMI6HezEM

The Movie for Initial Condition (4.2.1) with saturation function (4.2.4) when

qa = 4, qr = 1: https://youtu.be/tITYVBAE5Sk

C.2 Codes for Simulations

Please see all the codes in this link:

https://github.com/A-Y-Qi/2022Thesis/tree/main/Thesis_Code

https://youtu.be/tkEJHhlTo1Y
https://youtu.be/ayngyuC6iaA
https://youtu.be/RDMMI6HezEM
https://youtu.be/tITYVBAE5Sk
https://github.com/A-Y-Qi/2022Thesis/tree/main/Thesis_Code
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