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ABSTRACT

Glucose, a simple sugar, is a main source of energy for the majority of cells in our body. When the glucose

concentration in the blood is ill-controlled and glucose levels become too high, the individual is said to

have diabetes. Mathematical modelling of blood sugar dynamics has been explored since the early 1960s.

However, for most of these models, to find parameter values that yield plausible glucose behaviour one

needs measurements of regulatory hormones such as insulin and glucagon. These hormone measurements

require repeated blood tests and limit the feasibility of applying the model to “real world” medical appli-

cations such as disease diagnosis. Here, we apply a proportional-integral control model to human glucose

homeostasis. With this “closed-loop” approach, measurements of hormone concentrations do not need to

be taken. The model can be fit and tuned using glucose time series data obtained exclusively from a con-

tinuous glucose monitor. The resulting parameters from model tuning can then be used as an evaluation

of the effectiveness of an individual’s blood glucose homeostasis. Furthermore, when we apply the model

to glucose data from individuals with type 2 diabetes or prediabetes, these parameter values can be used

as a biomarker to predict the diabetic status of an individual. This research has the potential to be a

future diagnostic or intervention tool in type 2 diabetes and may aid in the early prediction of prediabetes.
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1 Introduction

1.1 Glucose Homeostasis and Diabetes

The term “Homeostasis” was coined by Walter Cannon in 1926, where it was defined as the mechanisms

employed by biological organisms in order to maintain a steady state. Changes in the external environ-

ment result in adjustments to the internal environment, which are corrected by automated physiological

processes [1]. In the human body, many homeostatic mechanisms are constantly functioning in order to

keep all systems within a healthy range. The amount of water in the body is regulated by the kidneys

and the temperature is regulated by blood flow, sweat, and shivering. Homeostasis in the human body

allows the individual to experience changes in their external environment without experiencing change

internally [2].

Arguably one of the most important examples of homeostasis is the regulation of glucose within the

bloodstream. Glucose is a high energy molecule that is used as a primary energy source by the majority

of cells in the body. It is obtained from breaking down and digesting foods such as carbohydrates, fruits,

vegetables, and milk products. Glucose is absorbed from the gastrointestinal tract through the small

intestine, where it then travels to the liver to be distributed throughout the body or stored as glycogen [3].

If glucose levels in the bloodstream are not within a specific range, the individual can experience neg-

ative side effects. If blood glucose levels are too low, the individual may experience anxiety, fatigue,

weakness, nausea, dizziness or lightheadedness. If the individual’s blood glucose remains low they may

even experience coma or death [4]. Alternatively, if the individual’s blood glucose is too high, they may

be fatigued, nauseous, have shortness of breath, stomach pain or a rapid heartbeat. If periods of high

blood glucose are extended for long periods of time, the individual could experience coma or death [5].

Ultimately, it is vital for the individual to keep the glucose levels within the optimal range .
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To keep glucose levels constant, the body primarily employs hormonal control. If blood glucose lev-

els are too high, the pancreas releases insulin to stimulate fat cells to convert and store glucose as fatty

acids. If blood glucose levels are too low, the pancreas releases glucagon which stimulates the liver to

break down the stored glycogen and release the glucose into the bloodstream, and eating foods rich in

glucose can raise blood glucose levels. Furthermore, the sympathetic nervous system (SNS) can also in-

crease blood glucose levels. The SNS is responsible for the ”flight or fight” response. When an individual

is exposed to stress, the SNS stimulates the relase of epinephrine, also known as adrenaline, in order to

prepare the body to fight the source of stress or flee from it. Along with increasing the heart rate and

blood pressure, and dilating the pupils and the airways of the lungs, Epinephrine also acts to increase

blood glucose levels. [3].

When the body is unable to control high blood glucose levels through insulin action, the individual

is diabetic. The type of diabetes an individual has is dependent on which part of the homeostatic mecha-

nism is dysfunctional. If the individual is unable to produce sufficient insulin from pancreatic beta cells,

they are Type 1 Diabetic. This type of diabetes is typically a result of genetics or autoimmune disease.

These individuals can replicate pancreatic release of insulin by injecting themselves with the hormone.

By constantly monitoring blood glucose levels and injecting insulin accordingly, individuals with Type

1 Diabetes recover some functionality of their glucose control system [6]. Alternatively, individuals who

are able to produce insulin but are unable to respond to it have Type 2 Diabetes (T2D). This type of

diabetes is typically caused by lifestyle - if individuals constantly have high blood glucose levels they

are more likely to develop T2D. Injecting insulin does not have as much of an effect for individuals with

T2D. Overall, individuals with untreated diabetes (both Type 1 and Type 2) have sustained periods of

high blood glucose [6].

The CDC estimates that over 34 million Americans have diabetes, corresponding to approximately 1

in 10 individuals. Of these individuals, 90-95% of diabetic individuals are Type 2 Diabetic [7]. This

is costing the American healthcare system over $237 billion in direct medical costs [8]. It is thus of
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medical interest to identify as many individuals as possible who may progress to T2D in an effort to

start preventative measures early.

The stage before an individual becomes Type 2 Diabetic is called Prediabetic. This stage is much

easier to reverse than if an individual is fully Type 2 Diabetic. Diet, exercise, and weight loss have

been shown to drastically reduce the risk of prediabetes progressing to type 2 diabetes, with the CDC

estimating that the risk of progressing can be reduced up to 58% [9]. The more individuals who are

identified to be in this stage and given a regimen of diet and exercise, the less prevalent T2D will become.

Current diagnostic methods for T2D and prediabetes involve blood tests. The most non-invasive method,

HbA1c, is a blood test used to measure the proportion of glycated hemoglobin. This metric gives an

estimate of the average blood glucose over the last 2-3 months. The next method, the Fasting Blood

Glucose test, is slightly more inconvenient. The individual must fast for 8 hours prior to the doctor’s

visit, then a blood test measures the concentration of remaining glucose in the blood after this period.

However, this test can be affected by the circadian rhythm and can vary depending on the time of day.

The final, and arguably most diagnostic depiction of glucose homeostasis dysfunction is the Oral Glucose

Tolerance Test. This test also requires around 8 hours of fasting beforehand, but once the individual is at

the doctor’s office they are given a solution of glucose, typically around 75 g. After ingesting the glucose

solution and waiting a period of 2 hours, a blood test is performed to measure the concentration of

glucose in the blood. This method is the only diagnostic method that takes into account the individual’s

blood glucose dynamics, as it evaluates how well the individual can manage a large amount of glucose

being added to the system. However, it is still just a single value measurement and the blood glucose

during the 2 hour wait period is not evaluated [7].

New developments of medical technologies yields the possibility of new diabetic screening methods.

For example, in recent years, continuous glucose monitors (CGMs) have become widely available with

many pharmacies distributing them over-the-counter. These devices function by placing a small fila-
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ment sensor under the skin on the arm or stomach. It then measures the concentration of glucose in

the interstitial fluid every few minutes. These readings can be transmitted to a specialized scanner and

exported to a computer, and in some cases a cellphone can scan the readings directly [10]. The frequency

of measurements and how long the device lasts depends on the brand, for example the FreeStyle Libre

will measure glucose every 15 minutes for 2 weeks.

Methods utilizing CGMs for screening and diagnosis are still in development. Perhaps the most well

known method is the mean amplitude of glycemic excusion, or MAGE. It is used as an index of glycemic

variability and is determined by calculating the mean of the blood glucose values that exceed one standard

deviation of the 24 hour mean blood glucose. Higher MAGE scores indicate a higher level of glycemic

variability and can be indicative of the lack of glycemic control seen in diabetic individuals [11]. However,

the methodology has been criticized as being arbitrary in the choice of one standard deviation, and that

the calculation is dependent on the operator when using a graphical approach [12]. Furthermore, MAGE

has a very high correlation with the standard deviation of an individual’s CGM data (r= 0.96), but is

much less efficient and more difficult to calculate [12, 13].

Application of math models to CGM data pose a promising alternative to current methods. The abun-

dance of data easily collected from CGMs provide a pseudo-continuous depiction of blood glucose dy-

namics. Applying a system of differential equations to this data will allow for a more robust depiction

of an individual’s glucose control.

Math modelling of the glucose control system has been explored since the early 1960s. The first models

were developed as compartment models simulating the glucose-insulin system. One example was a model

developed by Victor Bolie in 1960 . Data from previous animal experiments was fit to a 2-equation or-

dinary differential equation model and extrapolated to give estimates of insulin and glucose dynamics in

a human male [14].
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Similarly, a study published in 1979 by Richard Bergman fit data obtained by performing intravenous

glucose tolerance tests on dogs to seven different differential equation compartment models of the blood

glucose system. This article developed a metric denoted the Insulin sensitivity index from the parameter

values, which was defined as the “dependence of fractional glucose disappearance on plasma insulin”.

This metric could be obtained from a single glucose injection, and it was concluded that this metric may

have clinical applicability [15].

The glucagon-glucose control system was modelled much later than the insulin-glucose system. One

of the first models that incorporated both systems was by Saunders in 1998. Here, the idea of rein

control was introduced in the context of the glucose control system. If glucose levels were too high, it

would activate the insulin branch of the model to bring levels back to normal. Alternatively if glucose

was too low, the glucagon branch would be activated to increase glucose back to normal. This method

was analogous to pulling on the reigns of a horse to keep it centered on a set path [16].

Recent developments of the glucose control system involve more comprehensive models. These models

involve tens to hundreds of parameters to be fit, but give a more complete depiction of the mechanisms

involved in glucose homeostasis. These models do not use a compartment approach, and instead tend

to model the actual cell-to-cell interactions of the system. A recent example of this was developed by

Masroor in 2019. This model simulates the release of glucagon and insulin from the alpha and beta

pancreatic cells respectively. To implement this model with CGM data, 11 parameters would need to be

fit to 5 differential equations in order to reproduce measured data [17].

One restriction of the models discussed is that they require measurements of insulin and glucagon in

order to yield accurate predictions of blood glucose control. This eliminates the benefits of using a CGM

for diagnosis, as blood tests would still be required to obtain these hormone levels. Furthermore, many

models require estimates of consumed glucose or consumption of a specific form of food (such as a liquid

diet), even recent models developed specifically for use on CGM data [18, 19].
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van Veen et. al. developed a single-equation differential model that used a proportional-integral (PI) con-

troller [20]. The details of this particular model will be discussed in the next section, but this particular

type of control is common in engineering – particularly in temperature regulation or flight stabilization.

It involves two types of control: the proportional control responds to the exact deviation of the controlled

metric at that point in time; and the integral control which responds to what has happened in the recent

past. This results in different control depending on if the deviation was slow or almost instantaneous.

This type of control only requires three inputs - the past and current values of the metric you are at-

tempting to control, the baseline or ideal value of the controlled metric, and how far back in the past

you wish to look for the integral response (i.e. the memory of the system). When applying this system

to the glucose control system, the baseline value and the memory can be fit to the data, and the only

measurements required are the blood glucose concentrations. This effectively eliminates the need for

hormone measurements and allows a model to be fit to exclusively CGM data.

1.2 Thesis Objectives

The objective of this thesis is to explore the applicability of the model developed by van Veen et al. [20],

both to healthy individuals and to individuals with T2D and prediabetes. Dynamical system analysis

will be performed on the model, and we establish the model has a stable equilibrium for constant glucose

input and solutions remain bounded for time-dependent input. We further show that the parameters

obtained from fitting the model to healthy individual’s CGM data across four studies follow a normal or

log-normal distribution, and that the parameter results obtained from individual’s with type 2 diabetes

and prediabetes follow a slightly different distribution. Finally, parameter results were used to construct

two biomarkers of diabetic status: a single value biomarker constructed using the standard deviation of

the parameters, and a distribution comparison biomarker to compare the overall distribution of param-

eters for each individual. Both biomarkers can be used to predict diabetic status of type 2 diabetic or

prediabetic individuals.
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2 Model Introduction

2.1 Model Formulation

The dynamics of blood glucose homeostasis and its regulating feedback system are modelled by a system

of coupled differential and integral equations. We assume that there are three components contributing

to variations in glucose deviation: 1) Base metabolic rate - the rate that glucose is consumed during

rest to maintain basic bodily functions, 2) A negative feedback mechanism that regulates blood glucose

concentration as it deviates from normal levels, and 3) an input function that describes the external

intake of glucose such as those received by eating a meal. The equation is

de

dt
= −A3 − uϕ(e, ē) + F (t) (1)

where e is the excess glucose concentration from some set value ē. The base metabolic rate A3 is assumed

constant, and F (t) models the external glucose sources (i.e. food intake) and sinks (such as vigorous

exercise). The control variable u represents the collective effects of the active mechanisms that promote

returning blood glucose levels to normal. The aggregate effect is modelled using a proportional-integral

strategy and is described by the equation

u = A1e+A2

∫ t

t′=−∞
λexp−λ(t−t′)e(t′)dt′. (2)

The coefficients of proportional and integral response are A1 and A2 respectively, and 1/λ is the time

scale of the delays in the feedback mechanism. Note that regardless of the deviation (increase or decrease)

of glucose, the aggregated effect of the controller will act to bring glucose back to baseline levels. Finally,

the feedback term ϕ takes a different form for positive and negative deviations e.

19



For positive deviations (hyperglycemia), the main feedback mechanism involves the excretion of insulin

and the uptake of a fraction of the total glucose concentration per time unit. This mechanism is modelled

by mass action kinetics, resulting in a quadratic term similar to that used by Bergman [15]. For negative

deviations (hypoglycemia), the main feedback mechanism is that of the release of glucagon which, in

turn, triggers the release of glucose from the liver. This process we model with a linear term as we

consider the supply of glucose from the liver instantaneous and unlimited. The feedback ϕ is defined as

ϕ(e, ē) = max{e+ ē, ē}. (3)

2.2 Dynamical System Analysis

Dynamical system analysis will be performed on the aforementioned differential equation system. This

will be done to ensure the system behaves as expected at reasonable parameter values. To perform dy-

namical system analysis, the differential equation system will first be converted from a one dimensional

differential equation model to two dimensions. This is done as follows:

For the hyperglycemic model, we differentiate the equation for u, yielding

u̇ = A1ė+A2λe−A2λ
2
∫ t

−∞ e−λ(t−t′)e(t′)dt′

Adding u̇ to the initial equation for u multiplied by λ:

u̇+ λu = λA1e+A1ė+A2λe

The memory term is now gone, and ė and u̇ can now be represented as:

ė = g(u, e)
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u̇ = −λu+ λ(A1 +A2)e+A1g(u, e)

Where: g(u, e) = −A3 − u(e+ ē) + F (t)

Using the same process, we can convert the hypoglycemic model to a two dimensional ODE system:

ė = g(u, e)

u̇ = −λu+ λ(A1 +A2)e+A1g(u, e)

Where: g(u, e) = −A3 −A4u+ F (t)

The analysis will be performed assuming a constant input, such that F (t) = C.

2.2.1 Fixed Point Classification of Hypoglycemic Model

The equations for the hypoglycemic model are characterized by:

ė = −A3 − u− C

u̇ = −λu+ λ(A1 +A2)e+A1ė

= −λu+ λ(A1 +A2)e−A1A3 −A1u−A1C

We can find the nullclines of the system by setting both equations above equal to zero. Starting with

the ė nullcline:

0 = −A3 − u− C

u = −A3 + C
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Since all parameters are greater than zero, the ė nullcline will always be a horizontal line below the e

axis. Continuing with the u̇ nullcline:

0 = −λu+ λ(A1 +A2)e−A1A3 −A1u−A1C

λu+A1u = λ(A1 +A2)e−A1(A3 + C)

u =
λ(A1 +A2)e−A1(A3 + C)

λ+A1

In order to solve for the fixed points, we can find the intersections of the nullclines. Note, at the

intersection, ė = 0 and the nullcline for u̇ simplifies to:

u = (A1 +A2)e

Substituting the ė nullcline in for u:

−A3 + C = (A1 +A2)e

e∗ = − A3 + C

A1 +A2

Since all parameters are greater than zero, the e value of the fixed point will always be negative. We

already know the value of u from the ė nullcline, so our fixed point, (e∗, u∗) will be at (− A3+C
A1+A2

,−A3+C),

which will always lie in the third quadrant.

We can classify the fixed point using the Jacobian of the system.

J =

 0 −A4

λ(A1 +A2) −λ−A1A4


The trace of the matrix, τ(J), is equal to −λ − A1A4. The determinant of the matrix, △ is equal to

A4λ(A1 +A2). Given that all parameters are greater than zero, τ(J) will always be negative and △ will
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always be positive. Looking at τ2 − 4△, it is positive when A2 < (λ+A1A4)
2

4A4λ
− A1 and negative when

A2 > (λ+A1A4)
2

4A4λ
− A1. This indicates that when A2 < (λ+A1A4)

2

4A4λ
− A1, the fixed point is a stable node.

When A2 > (λ+A1A4)
2

4A4λ
−A1, the fixed point is a stable spiral.

Looking at the condition in which A2 = (λ+A1A4)
2

4A4λ
− A1, we have a repeated eigenvalue of −λ − A1A4.

Solving for the eigenvectors using ϵ to denote the eigenvalues:

Jx = ϵx 0 −A4

λ(A1 +A2) −λ−A1A4


x1

x2

 = (−λ−A1A4)

x1

x2


Multiplying out the left and right hand sides of the equation, we get:

−A4x2 = (−λ−A1A4)x1

λ(A1 +A2)x1 + (−λ−A1A4)x2 = (−λ−A1A4)x2

After solving for x1 and x2, we obtain the two linearly independent eigenvectors

 1

λ+A1

 and

0
1

.
Thus, the fixed point when A2 = (λ+A1A4)

2

4A4λ
−A1 is a stable star.

No bifurcations occur in the hypoglycemic system.

We can also analyze the dynamics of the phase space by calculating the nullclines and direction field of the

system. Setting ė equal to zero, we get the ė nullcline 0 = −A3−A4u−C, or u = −A3−C. Setting u̇ equal

to zero, we get the u̇ nullcline 0 = −λu+λ(A1+A2)e−A1A3−A1A4u−A1C, or u = λ(A1+A2)e−A1(A3+C)
λ+A1

Calculating the directions the of trajectories along each nullcline:
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For the ė nullcline, u̇ = −λu + λ(A1 + A2)e on the nullcline, and u is a constant negative value at

−A3 − C. Substituting this into u̇, we get u̇ = λ(A1 + C + (A1 + A2)e). When e < −A3 − C (i.e. less

than the e value at the fixed point), u̇ is negative and the flow will be down. When e is greater than the

e value at the fixed point, u̇ is positive and the flow will be up.

For the u̇ nullcline, for any u greater than the value of u at the fixed point (i.e. −A3 − C, ė will

be negative and flow will be to the left. For any u less than the value of u at the fixed point, ė will be

negative and the flow will be to the left.

2.2.2 Fixed Point Classification of Hyperglycemic Model

The equations for the hyperglycemic model are reflected as:

ė = −A3 − u(e+ ē) + C

u̇ = −λu+ λ(A1 +A2)e+A1ė

= −λu+ λ(A1 +A2)e−A1A3 −A1u(e+ ē) +A1C

We can solve for the nullclines by setting both equations equal to zero.

ė = 0 = −A3 − u(e+ ē) + C

u =
C −A3

(e+ ē)
(Equation for the ė nullcline)

u̇ = 0 = −λu+ λ(A1 +A2)e−A1A3 −A1u(e+ ē) +A1C

u =
λ(A1 +A2)e+A1(C −A3)

λ+A1(e+ ē)
(Equation for the u̇ nullcline)

To solve for the fixed points, we can just solve for the intersection of the nullclines. However, at the

fixed points, ė = 0, and u̇ = −λu + λ(A1 + A2)e. Setting this equation equal to zero, we obtain
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u∗ = (A1 +A2)e
∗. Substituting this into the ė nullcline, we get:

C −A3

e ∗+ē
= (A1 +A2)e∗

(e∗)2 + ēe∗ +
A3 − C

A1 +A2
= 0

Using the quadratic formula, we can solve for the value of e at the fixed point, e∗

e∗ =
−ē±

√
(ē)2 − 4 A3−C

A1+A2

2

Using u∗ = (A1 +A2)e
∗, we obtain:

u∗ = (A1 +A2)
−ē±

√
(ē)2 − 4 A3−C

A1+A2

2

By observation, we can see that there are two fixed points when (ē)2 − 4 A3−C
A1+A2

> 0, 1 fixed point when

(ē)2 − 4 A3−C
A1+A2

= 0, and no fixed points when (ē)2 − 4 A3−C
A1+A2

< 0. Thus, a saddle node bifurcation occurs

when (ē)2 − 4 A3−C
A1+A2

= 0, or when C = −(A1 +A2)
(ē)2

4 +A3.

We can classify the fixed points of the system using the Jacobian matrix, defined below:

J =

 −u −(e+ ē)

λ(A1 +A2)−A1u −λ−A1(e+ ē)


Calculating the determinant:

△ = λu+A1u(e+ ē)− [−λ(A1 +A2)(e+ ē) +A1u(e+ ē)]

= λu+ λ(A1 +A2)(e+ ē)
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At the fixed points, u∗ = (A1 +A2)e
∗, and

△ = λu∗ + λ(A1 +A2)(e
∗ + ē)

= λ(A1 +A2)e
∗ + λ(A1 +A2)(e

∗ + ē)

= λ(A1 +A2)(2e
∗ + ē)

Starting with the fixed point (e∗1, u
∗
1) =

(
−ē−

√
(ē)2−4

A3−C
A1+A2

2 , (A1 +A2)
−ē−

√
(ē)2−4

A3−C
A1+A2

2

)
:

△ = λ(A1 +A2)

2

−ē−
√
(ē)2 − 4 A3−C

A1+A2

2

+ ē


= λ(A1 +A2)

(
−ē−

√
(ē)2 − 4

A3 − C

A1 +A2
+ ē

)

= λ(A1 +A2)

(
−
√
(ē)2 − 4

A3 − C

A1 +A2

)

= −λ(A1 +A2)

√
(ē)2 − 4

A3 − C

A1 +A2

By definition, λ,A1, A2 > 0. Assuming that (ē)2 − 4 A3−C
A1+A2

> 0 (i.e. the system is not at the bifurcation

point), the determinant will always be negative and the fixed point will always be a saddle point.

At the fixed point (e∗2, u
∗
2) =

(
−ē+

√
(ē)2−4

A3−C
A1+A2

2 , (A1 +A2)
−ē+

√
(ē)2−4

A3−C
A1+A2

2

)
:

△ = λ(A1 +A2)(2e
∗ + ē)

= λ(A1 +A2)

2

−ē+
√
(ē)2 − 4 A3−C

A1+A2

2

+ ē


= λ(A1 +A2)

√
(ē)2 − 4

A3 − C

A1 +A2
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Assuming (ē)2 − 4 A3−C
A1+A2

> 0 (i.e. the system is not at the bifurcation point) and λ,A1, A2 > 0, the

determinant will always be positive. Calculating the trace of the Jacobian:

τ = −u− λ−A1(e+ ē)

At the fixed point, u∗ = (A1 +A2)e
∗

τ = −(A1 +A2)e
∗ − λ−A1(e

∗ + ē)

= −A1e
∗ −A2e

∗ − λ−A1e
∗ −A1ē

= −2A1e
∗ −A2e

∗ − λ−A1ē

= −2A1

−ē+
√
(ē)2 − 4 A3−C

A1+A2

2

−A2

−ē+
√
(ē)2 − 4 A3−C

A1+A2

2

− λ−A1ē

= A1ē−A1

√
(ē)2 − 4

A3 − C

A1 +A2
−A2

−ē+
√

(ē)2 − 4 A3−C
A1+A2

2

− λ−A1ē

= −A1

√
(ē)2 − 4

A3 − C

A1 +A2
−A2

−ē+
√

(ē)2 − 4 A3−C
A1+A2

2

− λ

=
A2ē

2
− (A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2
− λ
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Calculating τ2 − 4△:

τ2 − 4△ =

(
A2ē

2
− (A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2
− λ

)2

− 4

(
λ(A1 +A2)

√
(ē)2 − 4

A3 − C

A1 +A2

)

=

(
A2ē

2

)2

+

(
(A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2

)2

+ (λ)
2 − 2λ

A2ē

2

+ 2λ

(
(A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2

)
− 2

A2ē

2

(
(A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2

)

− 4λ(A1 +A2)

√
(ē)2 − 4

A3 − C

A1 +A2

=

(
A2ē

2

)2

+ (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)
+ λ2 − λA2ē

+ 2λ(A1 +
A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2
−A2ē(A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2

− 4λ(A1 +A2)

√
(ē)2 − 4

A3 − C

A1 +A2

=

(
A2ē

2

)2

+ (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)
+ λ2 − λA2ē

+ (2λA1 + λA2 − ēA1A2 − ē
A2

2

2
− 4λA1 − 4λA2)

√
(ē)2 − 4

A3 − C

A1 +A2

=

(
A2ē

2

)2

+ (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)
+ λ2 − λA2ē

+ (−ēA1A2 −
ēA2

2

2
− 2λA1 − 3λA2)

√
(ē)2 − 4

A3 − C

A1 +A2

=

(
A2ē

2

)2

+ (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)
+ λ2 − λA2ē

− (ēA1A2 +
ēA2

2

2
+ 2λA1 + 3λA2)

√
(ē)2 − 4

A3 − C

A1 +A2

This will be negative if:

λA2ē+ (ēA1A2 +
ēA2

2

2
+ 2λA1 + 3λA2)

√
(ē)2 − 4

A3 − C

A1 +A2

>

(
A2ē

2

)2

+ λ2 + (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)
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Or, if the negative terms in τ2−4△ are greater than the positive terms. Consequently, it will be positive

if

λA2ē+ (ēA1A2 +
ēA2

2

2
+ 2λA1 + 3λA2)

√
(ē)2 − 4

A3 − C

A1 +A2

<

(
A2ē

2

)2

+ λ2 + (A1 +
A2

2
)2
(
(ē)2 − 4

A3 − C

A1 +A2

)

Or, if the negative terms in τ2 − 4△ are less than the positive terms. Unfortunately, this is as far as the

model can be reduced, so exact fixed point behaviour (i.e. node vs spiral) can only be calculated when

the parameters are known.

If C ≥ A3,
√

(ē)2 − 4 A3−C
A1+A2

≥ ē, (ē)2 − 4 A3−C
A1+A2

≥ ē2. Recalculating the trace:

τ =
A2ē

2
− (A1 +

A2

2
)

√
(ē)2 − 4

A3 − C

A1 +A2
− λ

τ ≤ A2ē

2
−A1ē−

A2ē

2
− λ

τ ≤ −A1ē− λ

Therefore, if the input is greater than A3, the fixed point will be stable, since A1, ē, λ > 0. We know

that the determinant is always positive, so the fixed point at (e∗2, u
∗
2) when C ≥ A3 will either be a stable

spiral or a stable node.

2.2.3 Global Stability

In a recent paper, it was determined that a trapping region can be constructed to show global stability of

the dynamical system using a Lyapunav function, L(t) [21]. It was shown that solutions to the differential

equation system with constant input G = −A3 +C will eventually enter the interior of the curve L = K
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and remain there. The minimal value of K is bounded from above by

K− =
1

8A1λē2

( [
2ē2
√
A1A2 + 4ēλ

]√
A1A2ē4 + [A1ē2 +G]2

+A1(A1 + 2A2)ē
4 − 4A1ē

3λ+ 2A1Gē2 + 4Gēλ+G2
)

(4)

if G ≤ −A2ē
2/4 and by

K+ =
1

8A1λē2

(
2
√
A1A2ē

2
√

A1A2ē4 + [A1ē2 +G]2 + (A1ē
2 +G)2 (5)

+ 4λē2
√
A1[A1 +A2]ē2 + 4A1G+ 2A1A2ē

4 − 4A1ē
3λ
)

if G > −A2ē
2/4.

Using the above result, boundedness of solutions with variable input, G(t) = −A3 + F (t), can also be

determined. Assuming G is bounded, i.e. Gmin ≤ G(t) ≤ Gmax for t ∈ [0,∞) and letting Gmax > 0, it

was determined that solutions to to the system of equations eventually enter the interior of the curve

L = K and remain there. The constant K is given by

K = max{K−(Gmin),K+(Gmax)} (6)
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3 Model Application

3.1 Methods

Figure 1: Study Flow Chart

Results were analyzed from data obtained from four different studies: 1) a study conducted by researchers

at Stanford University (N = 57), referred to in this thesis as the Stanford Study [22], 2) a pilot study

conducted by Klick Labs in Toronto (N = 42) [23], referred to in this thesis as the Klick Pilot Study, 3)

a followup study conducted by Klick Labs on individuals living in India (N = 146), referred to in this

thesis as the Klick Followup Study 1 [24], and 4) a larger followup study conducted by Klick Labs on

individuals living in India (N = 277), referred to as the Klick Followup Study 2 [25].

In the studies conducted by Klick Labs, participants were fitted with a Freestyle Libre continuous glu-

cose monitor device. Blood glucose concentrations were automatically recorded every 15 minutes for

2 weeks, resulting in approximately 1400 data points per person. In the Stanford Study, participants

were fitted with a Dexcom G4 CGM device. Blood glucose concentrations were automatically recorded

every 5 minutes for a minimum of 2 weeks up to a maximum of 4 weeks. The protocol for the Stanford

Study is described further in the paper Glucotypes reveal new patterns of glucose dysregulation [22]. All

participants in the Klick pilot and follow-up studies gave informed consent to complete the survey, and

both studies received full ethics clearance from Advarra IRB Service and from Ontario Tech University’s

ethic review board.

Glucose baselines are calculated by taking averaging the glucose values of all the local minima from

the entire time series. The justification behind this method is that the glucose levels seem to fluctuate
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more around the baseline, as small glucose deviations are brought back to normal levels through the

insulin-glucagon system. This is a simple alternative to just taking the mean of all glucose levels over the

entire time series. Taking the average glucose concentration typically results in a baseline that is higher

than what is expected by observing the glucose time series, and may result in some glucose fluctuations

to be lost during peak selection. A comparison of the two methods can be seen in Figure ??.

Figure 2: Illustration of Baseline Calculation

After the baseline glucose level is calculated from a time series, positive and negative glucose deviations

(denoted “peaks” and “troughs” respectively) were extracted in order to apply the model. A discrete

Gaussian filter was applied to the entire time series, using a standard deviation of one 15 minute interval.

The first derivatives were calculated along the entire time series for the smoothed glucose data using a

discrete difference method. Peaks were defined as follows:

• The peak maximum occurs where the first derivative of the smoothed data changes from positive

to negative

• The peak endpoints occur where the first derivative changes from negative to positive

Selected peaks were then mapped back to corresponding time points in the raw glucose data. From this
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point, they were filtered using the following criteria:

• Peaks must be greater than or equal to one hour, or four data points. This is an attempt to reduce

any peaks that are a result of instrument noise rather than increasing glucose levels

• The peak maximum must be greater than the baseline plus one standard deviation of the glucose

data over the entire time series.

• The peak endpoints must be within the range [baseline ± one glucose standard deviation of the

time series]

At this point, the peaks were ready to be fed into the gradient descent framework and be fit to the model.

Each peak and trough extracted were fitted against the proposed model by minimizing the function

E =

∑n
i=1(ẽ(ti)− e(ti))

2∑n
i=1 ẽ(ti)

2
(7)

where ẽ(t) is the raw glucose deviation from baseline, and n is the number of recorded points for a

particular peak or trough. The base metabolic rate A3 is assumed constant as all individuals in the

study are considered healthy. The external input function F (t) is modelled using a Gaussian function

with a variable amplitude and variance, and the center was set to be 15 minutes (1 time interval) before

the glucose peak optimum. During hyperglycemia, this agrees reasonably well with data measured in

vitro [?]. In hypoglycemic cases, F (t) takes the same form but with a negative amplitude to model the

source causing a drop in blood glucose levels. ē is set to the minimum value of the selected peak for

hyperglycemic fittings, and the maximum value of the selected peak for hypoglycemic model fitting. The

integral term of the control variable was numerically approximated via the midpoint rule, and forward

Euler method was used for time stepping. A schematic of the gradient descent implementation, adapted

from [20], is shown in Figure 3.

Different peak extraction thresholds were explored, including evaluating the baseline plus or minus one
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Figure 3: Gradient Descent Implementation for Parameter Fitting. Starting at the top left, we
set the initial values parameters of A1, A2, λ, a, and s, where a and s are the amplitude and standard
deviation of the Gaussian input function, F (t). The initial step size is set to α = 1. We then compute
the model output e(t) and its difference from the representative peak ẽ. The gradient of the function
E (calculated from Equation 7) is approximated by finite differencing with a small constant δ making a
1% variation of the parameter. A gradient descent step of size α is then taken. If E increases from one
iteration to the next, the step is rejected and α is decreased. When α is smaller than a pre-set threshold
ϵ < 1012, the algorithm has converged. Adapted from [20].
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half standard deviation for the endpoint ranges, or having different ranges for the left and right endpoints.

Using other extraction criteria occasionally resulted in extracted values that did not resemble the desired

peak shape. For instance, there were occasionally peaks extracted that did not include the entire increase

and subsequent decrease back to baseline. In these cases, the beginning or end data points were left out,

leaving the extracted peak lopsided compared to the actual peak in the CGM data. Ultimately it was

determined that the current criteria was the most robust in the peak selection, yielding the highest

number of peaks with the proper shape.

3.2 Application to Healthy Individuals

The proposed model was initially validated using glucose data collected from individuals who are con-

sidered healthy based on the diabetic diagnostic metrics oral glucose tolerance test (OGTT) and the

measure of glycated haemoglobin (HbA1c).

Individuals selected for the study were considered healthy using the guidelines provided by the American

Diabetes Association, where A1c levels are below 5.7%, FBG below 100 mg/dL, and OGTT below 140

mg/dL. In addition, the selected participants are not known to be diagnosed with any medical condition

where medication may interfere with the subjects’ blood glucose regulation. In the Klick Followup 2

study, only HbA1c measurements were taken (no OGTT), so they were classified exclusively using the

threshold for HbA1c. The resultant number of participants was N = 224, where N = 36 individuals

were from the Stanford Study, N = 42 individuals were from the Klick Pilot Study, N = 57 were from

the Klick Followup Study 1, and N = 89 were from the Klick Followup Study 2.

Upon extracting the peaks and troughs of individual CGM data, the peaks and troughs of individuals

were fitted to the model with a fitting error of 0.3028 ± 0.6297 (Emax = 3.7545) and 0.1159 ± 0.1780

(Emax = 1.2578) respectively, as defined in Eq 7. In a small number of cases (< 0.5% of all selected

peaks), fitting error was comparatively high due to the shape of the selected peaks. In these instances,
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two or more smaller peaks were combined together into one automatically selected peak, resulting in

a glucose deviation that was multi-modal. An example multi-modal peak can be seen in Fig 6. Two

of each representative peaks and troughs are shown in Fig 4 and Fig 5 with similar error to the mean.

This demonstrates that our model is able to reproduce glucose levels of healthy individuals with good

agreement to real world measurements.
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Figure 4: Example results of the hyperglycemic model. The original glucose data is represented
by the red dashed lines. The set of black crosses is the model glucose output, and the black curve is the
cubic spline interpolation of the model outputs.
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Figure 5: Example results of the hypoglycemic model. The original glucose data is represented by the
red dashed lines. The set of black crosses is the model glucose output, and the black curve is the cubic spline
interpolation of the model outputs.

Figure 1 outlines the range of parameter values across each of the three datasets. In each study, the

mean of each parameter value fall within 15% of the overall mean. In addition, the largest coefficient

of variation is 0.3402 (Hyperglycemic, A1, Klick Follow-up), indicating low variances across all model
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Figure 6: Representative Bimodal Peak. The original glucose data is represented by the black dashed lines.

parameters (seen in Table 2). This suggests that the distributions of A1, A2, and λ are independent from

the source of data. From this it can be concluded that the model results are consistent regardless of

the presence of intangibles such as cultural and demographic differences. Due to our peak/trough selec-

tion method and length differences in CGM data, the number of peaks/troughs extracted vary between

different individuals. The means of A1 and A2 for each individual were computed (via bootstrapping)

to compensate for this inconsistency. We observed that the means of A1 and A2 result in a clustering

behaviour, demonstrated graphically in Figure 7.

The parameters A1, A2, and λ for all selected peaks for each individual were bootstrapped to derive an

estimation of the distribution of parameter values. A description of the bootstrap average calculation can

be found in Appendix A. Their respective distributions were tested for normality using the Shapiro-Wilk

test with 0.05 as the critical p-value. The distributions of parameter values and Gaussian overlays are

shown in Figures 8 and 9 respectively, as well as the corresponding Q–Q Plots. If the data falls directly

on the diagonal line in a Q-Q plot, the distribution is normal. However, if the data is U-shaped compared

to the diagonal line, the distribution is skewed, and data deviating in opposite directions from the line

at the ends correspond to heavier or lighter tails. The data suggests that all parameters follow a normal
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distribution except hypoglycemic λ. Upon further investigation, we discovered that λ falls under a log-

normal distribution. This was confirmed by the performing the Shapiro-Wilk test on log λ, resulting in

a p-value of 0.419. The results of the Shapiro-Wilk test are included in 1.

The experiments were performed on a HP EliteBook x360 1030 G4 laptop, with an Intel Core i7-8665U

at 1.9GHz, and 16.0 GB of system memory. Depending on the number of peaks/troughs extracted, the

tests required five to ten minutes to analyze the time series of an individual. However, the vast majority

(90%+) of single peaks/troughs require less than one second to compute their corresponding parameter

values. We can, therefore, obtain results in real time whenever peaks/troughs are detected by wearable

glucose monitoring sensors. Our data supports that the parameters of our model are normally distributed,

with the exception λ for hypoglycemia, which falls under a log-normal distribution. This suggests that

the model parameters remain fairly structured among healthy individuals regardless of the source of the

data. We observed that all three parameters were noticeably different in value between hyperglycemic

and hypoglycemic cases. In particular, parameter values for hyperglycemia are lower than that of hypo-

glycemia. This was expected because the control systems modelling hyperglycemic/hypoglycemic cases

are fundamentally different, mathematically speaking. At sufficiently large deviations, the quadratic con-

trol of the hyperglycemic model provides a much stronger feedback mechanism compared to the linear

control found in the hypoglycemic counterpart. Therefore, lower parameter values are needed for the

hyperglycemic model to achieve similar levels of feedback impact. As we extend our data to include

pre-diabetic and diabetic individuals for future studies, we expect values for A1 and A2 to decrease as

individual’s state of health worsens. In extreme cases, we suspect that the structure of the model param-

eters will quickly deteriorate. Should these claims prove to be correct, a variation and/or combination of

A1 and A2 may be used as potential biomarkers for early detection of glucose homeostatic dysfunction

of individuals.
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Klick Pilot Klick Follow-up Stanford Overall p-value

H
y
p
er
gl
y
ce
m
ic

A1 0.0077± 0.0020 0.0074± 0.0025 0.0064± 0.0019 0.0073± 0.0022 0.180

A2 0.0029± 0.0009 0.0037± 0.0007 0.0028± 0.0009 0.0033± 0.0009 0.135

λ 0.0290± 0.0011 0.0293± 0.0012 0.0286± 0.0009 0.0289± 0.0009 0.175

H
y
p
og
ly
ce
m
ic

A1 0.0227± 0.0036 0.0197± 0.0053 0.0217± 0.0037 0.0208± 0.0048 0.221

A2 0.0364± 0.0041 0.0364± 0.0037 0.0319± 0.0032 0.0354± 0.0041 0.143

λ 0.0417± 0.00568 0.0391± 0.0052 0.0363± 0.0055 0.0395± 0.0059 0.022

log λ −1.3648± 0.0548 −1.4112± 0.0591 −1.4443± 0.0629 −1.4078± 0.0649 0.419

Table 1: Ranges of model parameters.
Model parameter ranges for hyperglycemic and hypoglycemic cases with their respectively p-values of
the Shapiro-Wilk test for normality. The null-hypothesis H0 states that the model parameters are
normally distributed. The decision to reject or not reject H0 is based on a critical p-value of 0.05.

Klick Pilot Klick Follow-up Stanford Overall

H
y
p
er
gl
y
ce
m
ic

A1 0.260 0.340 0.297 0.301

A2 0.310 0.189 0.321 0.273

λ 0.038 0.042 0.031 0.031

H
y
p
og
ly
ce
m
ic A1 0.159 0.269 0.171 0.231

A2 0.113 0.102 0.100 0.116

λ 0.136 0.133 0.152 0.149

Table 2: Coefficient of Variation of Model Parameters.
Coefficient of variation is calculated by dividing the standard deviation of a model parameter by the

mean of the same parameter.
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Figure 7: Comparison of model parameter clustering between hyperglycemic and hypo-
glycemic episodesMean (by subject) model parameter values for peaks and troughs found in hyper-
glycemic and hypoglycemic cases respectively. Parameter values for hyperglycemic cases are depicted by
the circle markers, and in contrast, star markers represent parameter values for hypoglycemic cases. The
units of A1 and A2 are both in litre/(min×mmol).
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Figure 8: Normalized model parameter values for hyperglycemic episodes In the left column,
the blue columns form the histogram for each normalized parameter value distributed into ten bins of
equal width. The red curve denotes the normal distribution with mean and variance that matches the
sample mean and variance of each corresponding parameter. The right column are Q-Q plots for each
model parameter. The rows, from top to bottom, correspond to the parameters A1, A2, and λ. The
units of the parameters are [A1] = [A2] = litre/(min×mmol), and [λ] = 1/min.
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Figure 9: Normalized model parameter values for hyperglycemic episodes In the left column,
the blue columns form the histogram for each normalized parameter value distributed into ten bins of
equal width. The red curve denotes the normal distribution with mean and variance that matches the
sample mean and variance of each corresponding parameter. The right column are Q-Q plots for each
model parameter. The rows, from top to bottom, correspond to the parameters A1, A2, and log λ. The
units of the parameters are [A1] = [A2] = litre/(min×mmol), and [log λ] = log(1/min).
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(a) A1 Hyperglycemic (b) A1 Hypoglycemic

(c) A2 Hyperglycemic (d) A2 Hypoglycemic

(e) λ Hyperglycemic (f) λ Hypoglycemic

Figure 10: Representation of Population Average and Standard Deviation for Parameters.
Parameters that were a result of the hyperglycemic system are shown on the left, and the parameters
associated with the hypoglycemic system are shown on the right. Blue lines are for the healthy population,
yellow is for the prediabetic population, and red is for the diabetic population.
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The log-lambda distribution of the hypoglycemic system indicates a right-skewed distribution of lambda,

with an increased amount of higher parameter values than in a normal distribution. As lambda is the

inverse time scale of the memory kernal, the larger values represent decreased system memory. The

physiological reason behind this can possibly be attributed to a few things. First, the production,

secretion and elimination of glucagon varies from person to person, with the half life of glucagon ranging

from 4 to 7 minutes [26]. Depending on the individual’s response to low glucose levels, this may result

in decreased system memory. Additionally, the controller, u, is an aggregation of control effects, which

for the hypoglycemic system includes both glucagon and epinephrine. In times of stress epinephrine

is released, resulting in almost instantaneous glucose increases [27]. This immediate increase occurs

regardless of recent history of the system, which could result in the memory time scale being much

smaller (and lambda subsequently becoming larger).

3.3 Application to Prediabetic/ Diabetic Individuals

Individuals selected for the study were considered diabetic using the guidelines provided by the American

Diabetes Association, with A1c levels above 6.5%, FBG above 125 mg/dL and OGTT above 200 mg/dL.

The resultant number of participants wasN = 52, whereN = 4 individuals were from the Stanford Study,

N = 9 were from the first Klick Followup Study, and N = 39 were from the second Klick Followup Study.

Upon extracting the peaks and troughs of individual CGM data, the peaks and troughs of individuals

were fitted to the model with a fitting error of 7.9027 ± 14.8001 (Emax = 93.9713) and 0.0660 ± 0.2871

(Emax = 4.4833) respectively, as defined in Eq 7.

Overall, diabetic individuals have selected peaks that deviate from the baseline for much longer and the

deviations relative to baseline are much larger, which corresponds to the larger error E discussed above.

For healthy individuals, most glucose deviations are approximately 1 mmol per litre above the baseline.

For diabetic individuals, the glucose deviations can be 10 or more mmol above the baseline levels. This

results in smaller A1 values once the model has been fit to the data. Additionally, the error for the
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Figure 11: Example results of the hyperglycemic model for diabetic individuals. The original glucose
data is represented by the red dashed lines. The set of black crosses is the model glucose output, and the black
curve is the cubic spline interpolation of the model outputs.
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Figure 12: Example results of the hypoglycemic model for diabetic individuals. The original glucose
data is represented by the red dashed lines. The set of black crosses is the model glucose output, and the black
curve is the cubic spline interpolation of the model outputs.

hyperglycemic model for diabetic individuals is much greater than the error for healthy individuals, in-

dicating a lack of control of the system.

Despite the baseline for diabetic individuals being larger than in healthy individuals, the negative devi-

ations from baseline in these individuals are very similar to what is seen in healthy individuals on both

length of time of the troughs and in the maximum relative deviation. The error is also very similar to

what is seen in healthy individuals.
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Klick Follow-up Stanford Overall p-value

H
y
p
er
g
ly
ce
m
ic

A1 0.0011± 0.0020 0.0031± 0.0015 0.0013± 0.0021 5.698e− 05

A2 0.0035± 0.0011 0.0041± 0.0010 0.0037± 0.0011 0.679

λ 0.0276± 0.0007 0.0281± 0.0014 0.0277± 0.0007 8.395e− 05

H
y
p
o
gl
y
ce
m
ic A1 0.0090± 0.0047 0.0206± 0.0044 0.0097± 0.0054 0.116

A2 0.0306± 0.0046 0.0321± 0.0002 0.0306± 0.0045 0.253

λ 0.0317± 0.0077 0.0389± 0.0053 0.0322± 0.0077 0.115

Table 3: Ranges of model parameters for diabetic individuals. Model parameter ranges for
hyperglycemic and hypoglycemic cases with their respectively p-values of the Shapiro-Wilk test for nor-
mality. The null-hypothesis H0 states that the model parameters are normally distributed. The decision
to reject or not reject H0 is based on a critical p-value of 0.05.

Individuals selected for the study were considered prediabetic using the guidelines provided by the Amer-

ican Diabetes Association, where A1c levels are between 5.7% and 6.5%, FBG between 100 mg/dL and

125 mg/dL and OGTT between 140 mg/dL and below 200 mg/dL. For the studies in which HbA1c,

OGTT, and FBG tests were performed, the individual was classified as prediabetic if their OGTT was

between 7.8 mmol/litre and 11.1 mmol/litre, or if both their HbA1c and FBG levels were within predia-

betic ranges. In the second Klick Followup study, only HbA1c measurements were taken (no OGTT), so

they were classified exclusively using the threshold for HbA1c. The resultant number of participants was

N = 77, where N = 11 individuals were from the Stanford Study, N = 16 were from the Klick Followup

Study 1, and N = 50 were from the Klick Followup Study 2. Overall, prediabetic individuals had a high

proportion of ”healthy” glucose deviations in their CGM data (deviation from baseline approximately 1

mmol per litre), but had some larger deviations similar to those seen in the diabetic population (deviation

from baseline approximately 4 mmol per litre). When the data was fit to the hyperglycemic and hy-

poglycemic model, the error was 1.3585±2.6422 (Emax = 56.2137) and 0.02043±0.0759 (Emax = 1.4273).

46



Klick Follow-up Stanford Overall p-value

H
y
p
er
gl
y
ce
m
ic

A1 0.0048± 0.0020 0.0025± 0.0012 0.0041± 0.0020 0.629

A2 0.0043± 0.0008 0.0037± 0.0005 0.0040± 0.0007 0.687

λ 0.0295± 0.0012 0.0283± 0.0009 0.0291± 0.0012 0.839

H
y
p
og
ly
ce
m
ic A1 0.0164± 0.0047 0.0212± 0.0048 0.0178± 0.0052 0.191

A2 0.0352± 0.0036 0.0334± 0.0026 0.0346± 0.0034 0.902

λ 0.0393± 0.0068 0.0364± 0.0027 0.0384± 0.0060 0.191

Table 4: Ranges of model parameters for prediabetic individuals. Model parameter ranges
for hyperglycemic and hypoglycemic cases with their respective p-values of the Shapiro-Wilk test for
normality. The null-hypothesis H0 states that the model parameters are normally distributed. The
decision to reject or not reject H0 is based on a critical p-value of 0.05.
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Figure 13: Normalized model parameter values for hyperglycemic cases for diabetic indi-
viduals. In the left column, the blue columns form the histogram for each normalized parameter value
distributed into ten bins of equal width. The red curve denotes the normal distribution with mean and
variance that matches the sample mean and variance of each corresponding parameter. The right column
are Q-Q plots for each model parameter. The rows, from top to bottom, correspond to the parameters
A1, A2, and λ. The units of the parameters are [A1] = [A2] = litre/(min×mmol), and [λ] = 1/min.
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Figure 14: Normalized model parameter values for hyperglycemic cases for prediabetic indi-
viduals. In the left column, the blue columns form the histogram for each normalized parameter value
distributed into ten bins of equal width. The red curve denotes the normal distribution with mean and
variance that matches the sample mean and variance of each corresponding parameter. The right column
are Q-Q plots for each model parameter. The rows, from top to bottom, correspond to the parameters
A1, A2, and λ. The units of the parameters are [A1] = [A2] = litre/(min×mmol), and [λ] = 1/min.
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4 Biomarkers

One of the objectives of this research was to use the parameters that were obtained through model fitting

to the CGM data to predict the diabetic status of individuals with type 2 diabetes or prediabetes. This

notion stems from the idea of biomarkers. A biomarker is a defined, measureable characteristic that

indicates a normal biological process, a disease process, or a response to exposure or intervention. Some

common example of biomarkers are blood pressure and pulse. These metrics can be used to distinguish

healthy individuals from individuals in a disease state.

Although the hypoglycemic system may be impacted by type 2 diabetes, there is substantially more

evidence supporting the difference in the glucose-insulin (hyperglycemic) system between healthy indi-

viduals and individuals with type 2 diabetes. As such, the parameters analyzed in this section will come

exclusively from the hyperglycemic peak fitting.

4.1 Initial Type 2 Diabetes Biomarker

The first attempt at a biomarker from this model came from the paper published by van Veen et al. in

2020. Five glucose peaks of similar length were averaged together to form a single representative peak.

Gradient descent was run on this single peak, and the resulting parameters A1 and A2 were scaled by the

standard deviation of the raw CGM time series divided by the maximum value of the controller for that

peak. In the paper, it was predicted that the scaled A1 would decrease and the scaled A2 would increase

as individuals become more diabetic. This prediction was due to the shapes of the peaks themselves, as

longer, more sustained glucose deviations in healthy individuals were characterized by low A1 and high

A2. It was concluded that diabetic individual peaks would be longer, with a more gradual decline than

individuals with a healthy glucose homeostasis [20].
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A similar attempt at a biomarker was made with the current data and method. However, some mod-

ifications had to be made, as the current method involves fitting all 80-150 selected peaks of different

lengths. Rather than taking the parameter output from a single representative peak (as was done by

van Veen [20]), the A1 and A2 parameter values obtained from performing gradient descent on all 80-150

peaks were averaged. A figure depicting only the healthy and diabetic averaged A1 and A2 parameter

values, and the healthy, prediabetic, and diabetic averaged A1 and A2 parameter values can be seen in

Figure 15. The class of the individual was determined using the same criteria as in Section 3.

Figure 15: Average A1 & A2, Comparing Diagnostics. The image on the left depicts the average A1

and A2 calculated values for each healthy and diabetic individual. Red dots denote diabetic individuals
and green dots denote healthy individuals. The image on the right depicts the average A1 and A2 calcu-
lated values for each healthy, diabetic, and prediabetic individual. Red dots denote diabetic individuals,
yellow dots denote prediabetic individuals and green dots denote healthy individuals.

To get a more comprehensive comparison between this metric and the one calculated by van Veen et al.,

the values will be scaled by the standard deviation of the raw CGM divided by the average maximum

value of the controller for each individual. This can be seen in Figure 16.

Other metrics were also analyzed for validity. The range of the A1 and A2 values was calculated and

plotted against each other. These values were also scaled using the same factor described above. The

results can be seen in Figure 17.
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Figure 16: Scaled Average A1 & A2, Comparing Diagnostics. The image on the left depicts the
average A1 and A2 calculated values for each healthy and diabetic individual, scaled by the standard
deviation of the entire CGM time series, σe, divided by the average maximum value of the controller, um.
Red dots denote diabetic individuals and green dots denote healthy individuals. The image on the right
depicts the average A1 and A2 calculated values for each healthy, diabetic, and prediabetic individual,
scaled by the standard deviation of the entire CGM time series, σe, divided by the average maximum value
of the controller, um. Red dots denote diabetic individuals, yellow dots denote prediabetic individuals
and green dots denote healthy individuals.

Finally, the standard deviation of A1 and A2 values was used. These values were also scaled using the

factor above, and can be seen in Figure 18.

4.1.1 Separation Based on Gender

There is currently no distinction between males and females for the thresholds of the current diagnostic

methods. However, males and females differ physiologically in their glucose control. Before menopause,

women have high concentrations of estrogens in their bloodstream. Concentrations can be 15-350 pg/mL

for estradiol and 17-200 pg/mL for estrone, depending on their point in their menstruation cycle. On the

other hand, men have 10-40 pg/mL of estradiol and 10-60 pg/mL of estrone at any point (CITE). This

is significant for glucose homeostasis, as estrogen has direct effects on insulin and energy metabolism.

Studies have shown that estrogen increases sensitivity of insulin to insulin-sensitive tissues, has effects

on β-cells in the pancrease to regulate insulin release, and also has effects in the liver and adipose fat

52



tissue to regulate glucose release into the bloodstream [28].

Due to the recorded difference in glucose homeostasis between the genders, the analysis performed to

obtain a biomarker of diabetic status will also be performed on each gender separately. For females,

scaled and unscaled average parameter values of A1 and A2 can be seen in Figure 19. Parameter range

results for females can be seen in Figure 20, and parameter standard deviation results for females can be

seen in Figure 21. For males, average parameter results are seen in Figure 22, parameter range results

can be seen in Figure 23, and parameter standard deviation results can be seen in Figure 24.
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(a) (b)

(c) (d)

Figure 17: Range A1 & A2, Comparing Diagnostics. The range of parameter values (difference
between the maximum parameter value and the minimum parameter value) is plotted for A1 and A2

for each individual, shown as φA1
and φA2

respectively. Healthy and diabetic individuals are shown in
green and red respectively. Prediabetic individuals are shown in yellow in (b) and (d). (a) and (b) are
the unscaled range, and (c) and (d) are the range scaled by the standard deviation of the entire CGM
time series divided by the average maximum value of the controller, u.
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(a)

(b)

(c) (d)

Figure 18: Standard Deviation A1 & A2, Comparing Diagnostics. The standard deviation of
parameter values is plotted for A1 and A2 for each individual, shown as σA1

and σA2
respectively.

Healthy and diabetic individuals are shown in green and red respectively. Prediabetic individuals are
shown in yellow in (b) and (d). (a) and (b) are the unscaled standard deviation, and (c) and (d) are the
standard deviation of the parameters A1 and A2, scaled by the standard deviation of the entire CGM
time series divided by the average maximum value of the controller, u.
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(a)

(b)

(c) (d)

Figure 19: Average A1 & A2, Comparing Diagnostics, Females. The averaged parameter values
are plotted for A1 and A2 for each individual. Healthy and diabetic individuals are shown in green and
red respectively. Prediabetic individuals are shown in yellow in (b) and (d). (a) and (b) are the unscaled
average, and (c) and (d) are the average of the parameters A1 and A2, scaled by the standard deviation
of the entire CGM time series, σe, divided by the average maximum value of the controller, um.
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(a)

(b)

(c)

(d)

Figure 20: Range A1 & A2, Comparing Diagnostics, Females. The range of parameter values is
plotted for A1 and A2 for each individual, shown as φA1 and φA2 . Healthy and diabetic individuals are
shown in green and red respectively. Prediabetic individuals are shown in yellow in (b) and (d). (a) and
(b) are the unscaled range, and (c) and (d) are the range scaled by the standard deviation of the entire
CGM time series, σe, divided by the average maximum value of the controller, um.
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(a)

(b)

(c)

(d)

Figure 21: Standard Deviation A1 & A2, Comparing Diagnostics, Females. The standard
deviation of parameter values is plotted for A1 and A2 for each individual, shown as σA1

and σA2
.

Healthy and diabetic individuals are shown in green and red respectively. Prediabetic individuals are
shown in yellow in (b) and (d). (a) and (b) are the unscaled standard deviation, and (c) and (d) are the
standard deviation of the parameters A1 and A2, scaled by the standard deviation of the entire CGM
time series, σe, divided by the average maximum value of the controller, um.
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(a)

(b)

(c) (d)

Figure 22: Average A1 & A2, Comparing Diagnostics, Males. The averaged parameter values are
plotted for A1 and A2 for each individual. Healthy and diabetic individuals are shown in green and red
respectively. Prediabetic individuals are shown in yellow in (b) and (d). (a) and (b) are the unscaled
average, and (c) and (d) are the average of the parameters A1 and A2, scaled by the standard deviation
of the entire CGM time series, σe, divided by the average maximum value of the controller, um.
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(a)

(b)

(c)

(d)

Figure 23: Range A1 & A2, Comparing Diagnostics, Males. The range of parameter values is
plotted for A1 and A2 for each individual, shown as φA1 and φA2 . Healthy and diabetic individuals are
shown in green and red respectively. Prediabetic individuals are shown in yellow in (b) and (d). (a) and
(b) are the unscaled range, and (c) and (d) are the range scaled by the standard deviation of the entire
CGM time series, σe, divided by the average maximum value of the controller, um.
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(a)

(b)

(c)

(d)

Figure 24: Standard Deviation A1 & A2, Comparing Diagnostics, Males. The standard deviation
of parameter values is plotted for A1 and A2 for each individual, shown as σA1

and σA2
. Healthy and

diabetic individuals are shown in green and red respectively. Prediabetic individuals are shown in yellow
in (b) and (d). (a) and (b) are the unscaled standard deviation, and (c) and (d) are the standard
deviation of the parameters A1 and A2, scaled by the standard deviation of the entire CGM time series,
σe, divided by the average maximum value of the controller, um.
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By looking at the scaled and unscaled parameter distributions, there is a fairly clear progression of dia-

betic status. Starting with the cases in which gender was not separated for unscaled A1 and A2 (Figure

15) results dictated that A1 values for healthy individuals were moderate-high comparatively to the A1

values of all the participants. Average A1 values were low for diabetic individuals compared to the A1

values of all the participants. For prediabetic individuals, parameter results were between the average

values for diabetic and healthy individuals, with moderate average A1 values and high A2 values com-

pared to the rest of the data.

Looking at the case in which the average A1 and A2 values are scaled by the standard deviation of

the glucose data and the maximum value of the controller, u, healthy individuals have scaled A1 that

are high, and low scaled A2 values. For diabetic individuals, scaled A1 is low and scaled A2 is high. Pre-

diabetic individuals fall between healthy and diabetic individuals, with moderate scaled A1 and A2 values.

We can compare this to the hypothesis proposed in van Veen et al. (2020). The article hypothe-

sizes that the scaled average parameter values would decrease for A1 and increase for A2 as an individual

becomes more diabetic, or their glucose homeostasis becomes less effective. Although this hypothesis is

correct, particularly for diabetic individuals, it breaks down slightly when applied to prediabetic indi-

viduals. There is a slight shift of prediabetic individuals towards the upper left of the plot, however, the

progression of healthy to T2D status is not as clear as indicated in the paper, with many prediabetic

individuals overlapping heavily with healthy individuals. Thus, it becomes necessary to evaluate other

metrics summarizing parameter results to determine if a more accurate predictor of glucose homeostasis

effectiveness can be obtained.

The range (difference between the maximum value and minimum value) of parameter values A1 and

A2 and the standard deviation of parameter values A1 and A2 were also evaluated, seen in 17 and 18.

For the unscaled range and standard deviation of parameter values, both the metrics for A1 and A2

decreased as an individual became diabetic. For the scaled metrics, healthy individuals had low scaled
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metrics for A1 and A2, and diabetic individuals had high scaled metrics for both the range and the stan-

dard deviation of A1 and A2. In the scaled and unscaled range and standard deviation, the prediabetic

population was much more centralized to be between the diabetic and healthy population metrics than

what was seen in the average parameter values in Figure 15 and 16.

The clearest separation of individuals is seen when the scaled standard deviation of the A1 parame-

ter is plotted against the scaled standard deviation of the A2 parameter, in both the cases in which

results were analyzed independently of gender and by separating based on gender. The two values have

a strong positive linear relationship, with a linear correlation coefficient of 0.927 and a slope of 0.5 for

the case of no gender separation.

Looking at the parameter results after gender separation, there is not much difference between males and

females. Diabetic and prediabetic individuals appear at roughly the same coordinates for both males

and females, and healthy individuals are all within the same range of values. It can be concluded that

gender does not play much of an effect in the initial parameter analysis, however gender will continue to

be separated for subsequent analysis in the event that more accurate results are yielded.

4.1.2 Single Value Homeostasis Biomarker

One of the objectives of this research is to evaluate an individual’s glucose homeostasis. The simplest way

to do this with the available results of model fitting is to create a single value biomarker that indicates

glucose homeostasis effectiveness. To construct the biomarker, the sum of the scaled standard deviation

of the A1 parameter and two times the scaled standard deviation of the A2 parameter will be taken. For

a comprehensive metric of an individuals glucose homeostasis, this sum will then be multiplied by the in-

dividual’s average glucose level. The full calculation of the homeostasis Biomarker is calculated as follows:
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Biomarker =
eavgσe

um
∗ (σA1

+ 2 ∗ σA2
) (8)

Where eavg is the average glucose value, σe is the standard deviation of the glucose, um is the average

maximum value of the controller, σA1
is the A1 parameter standard deviation, and σA2

is the A2 param-

eter standard deviation. The smaller this biomarker is, the more effective the individual’s homeostasis

is. If the biomarker is large, it would indicate a dysfunctional glucose homeostasis. This biomarker will

be in the same units as the blood glucose measurements, in this instance, mmol/L.

The calculated biomarker for healthy and diabetic individuals can be seen in Figure 25. Prediabetic

individuals are added in Figure 26.
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(a) Both Genders

(b) Female (c) Male

Figure 25: Single Value Biomarker for Healthy and Type 2 Diabetic Individuals. Biomarker
is plotted for (a) both genders, (b) females only, and (c) males only. In each subfigure, the x-axis depicts
the biomarker value, the y-axis in the histogram represents the histogram density. Red depicts diabetic
individuals, green depicts healthy individuals.
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(a) Both Genders

(b) Female (c) Male

Figure 26: Single Value Biomarker for Healthy, Prediabetic and Type 2 Diabetic Individuals.
Biomarker is plotted for (a) both genders, (b) females only, and (c) males only. In each subfigure, the
x-axis depicts the biomarker value, the y-axis in the histogram represents the histogram density. Red
depicts diabetic individuals, yellow depicts prediabetic individuals, and green depicts healthy individuals.
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The effect of male and female separation appears to be much more distinct when calculating this

biomarker than just observing the parameter values. If the cutoff between healthy and type 2 diabetic

females is selected to be 13.0, 4 healthy individuals (corresponding to 6.3% of all healthy individuals)

would be predicted to be type 2 diabetic and no diabetic individuals would be predicted to be healthy.

For males, if the cutoff is selected to be 17.0, 4 healthy individuals (corresponding to 4.7% of all male

healthy individuals) are classified as type 2 diabetic, and 1 diabetic individual is classified as healthy

(3.4% of all male diabetic individuals). The one diabetic individual who was below the diabetic cutoff

had an HbA1c measurement of 6.9%, OGTT of 199 mg/dL and FBG of 90 mg/dL. This individual is

within healthy metrics for their FBG, on the diabetic cutoff for OGTT, and diabetic for HbA1c. 74.8%

of all healthy individuals, 72.6% of healthy males, and 61.9% of healthy females were greater than the

minimum prediabetic biomarker value.

There is a fairly clear distinction between healthy and diabetic individuals in Figure 25. Apart from

a few healthy outliers, as the biomarker increases, the proportion of diabetic individuals also increases.

This trend is followed by the prediabetic individuals, who fall in the upper range of the healthy individ-

uals, seen in Figure 26. However, there is not a clear separation of healthy individuals and prediabetic

individuals. Thus, another method will be implemented in the next section to better classify individuals

into the Healthy, Prediabetic, and Type 2 Diabetic classes.
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4.2 Model Parameter Distribution Biomarker

In the previous section, we looked at different parameter summary values for A1 and A2. By doing so,

we were able to extract a biomarker of diabetic status. However, a main objective of this research was

to identify more individuals who may qualify as “prediabetic”, or whose glucose homeostasis is slightly

abnormal. In this section we propose a new method for the evaluation of glucose homeostasis. Rather

than looking at the parameter summary values such as mean, range, and standard deviation, we look at

the distribution of the parameters as a whole.

The methodology behind this section is fairly straightforward. First, all the individuals who have di-

agnostic metrics (HbA1c, OGTT, FBG) were classified as healthy, prediabetic, or T2D using the same

protocol as in Chapter 3. Once all the individuals have been placed within the three groups, every

parameter value for each individual is used to create a representative parameter distribution for each

group. As a result, we end up with representative parameter distributions for the parameters A1 and A2

for healthy individuals, representative parameter distributions for prediabetic individuals, and represen-

tative parameter distributions for diabetic individuals.

Individuals who were classified as prediabetic in the second Klick Followup study were excluded when

creating the representative prediabetic distribution. Numerous sources indicate a discrepancy between

HbA1c and OGTT for diagnosing prediabetes, with one source concluding that HbA1c had a sensitivity

of 49% and specificity of 79% [29]. This indicates that only 49% of individuals in this review classified as

prediabetic from HbA1c were actually prediabetic according to their OGTT. Furthermore, the Stanford

study data was excluded, as the gender of all participants was not given. Both the Stanford Study and

the second Klick Followup Study will be used for validation after the method is implemented.

Once the representative distributions for the groups were created, they were compared to an individual’s

parameter distributions. By determining which distribution the individual was closest to, the individual

could be classified as either Healthy, Prediabetic, or Diabetic. We are able to compare distributions by
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Figure 27: Representative Parameter Histograms, A1.

first converting the three representative parameter distributions for a single parameter and an individual’s

distribution for the same parameter into cumulative distribution functions (CDF). The area between the

individual’s CDF and the representative Healthy CDF is calculated numerically by taking the sum across

all parameter values of the vertical difference between the two distributions multiplied by the step size.

The area is then calculated between the individual’s CDF and the representative Prediabetic CDF, and

between the individual’s CDF and the Diabetic CDF. Whichever group corresponds to the minimum

area will be the group that the individual will be classified as. For example, if the area is minimized

between the individual and the representative Prediabetic distributions, the individual will be classified

as Prediabetic.

4.2.1 A1 Only

The distribution of the bootstrapped parameter A1 for diabetic individuals differed the most from the

bootstrapped parameter distribution of A1 for healthy individuals, seen in Tables 3 and 1. As such, this

is the parameter we will start with in order to predict diabetic status. The representative distributions

can be seen in Figure 27 and the representative CDFs for healthy, prediabetic, and diabetic individuals

can be seen in Figure 28.

After the representative distributions have been calculated for males and females, we can begin to compare

the individual’s parameter distribution for A1 with the representative distributions. A male individual’s

A1 distribution and how it compare to representative distributions in Figure 29. Calculating the distance
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Figure 28: Representative Parameter Distributions, A1.

between the cumulative distribution functions, the distance between the individual and the healthy dis-

tribution is 1.4977, 3.2277 between the individual and prediabetic distribution, and 6.9766 between the

individual and diabetic distribution. The minimum distance in this example is between the individual

and the healthy distribution, therefore the individual would be predicted to be healthy according to their

A1 values.

Looking at two more examples, we can see in Figure 30 (a) an individual who’s CDF closely resem-

bles that of the prediabetic distribution. Calculating the area between the curves, the area between the

individual CDF and representative healthy CDF was 2.4524, the area was 0.9135 between the individual

and the prediabetic distribution, and 3.7609 between the individual and the diabetic population. The

minimum area is between the individual and the prediabetic distribution (which can be visually confirmed

in Figure 30 (a)), thus the individual would be predicted to be prediabetic. Finally, we have a diabetic

male according to their diagnostics. Comparing the distribution to the representative distributions, the

area between the individual CDF and the healthy CDF is 5.6155, the area between the individual CDF

and prediabetic CDF is 3.5278, and the area between the individual CDF and the diabetic CDF is 1.3513.

This can be visually confirmed by the four CDFs in Figure 30 (b). Thus, the individual is predicted to

be diabetic, which aligns with the actual diagnosis.
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(a) Individual Parameter Distribution (b) Representative CDF Comparison

Figure 29: A1 Parameter Distribution for a Healthy Individual. Parameter Histogram for the
individual is found in (a) and the Comparative Cumulative Distribution Function in (b)

The results of the analysis can be found in Table 5. If we do not split the population into male and

female, Healthy classification has a precision and recall of 97.9% and 72.0% respectively. The prediabetic

classification has a precision and recall of 15.9% and 62.5%, and the diabetic classification has a precision

and recall of 82.7% and 89.6%. A detailed description of precision and recall and their corresponding

calculations can be found in Appendix B.

When the CDF analysis is performed on the genders separately, we obtain slightly different results.

For females, the healthy precision, prediabetic precision, and diabetic precision is 98.3%, 17.9%, and

80.0% respectively. The recall is 71.1%, 83.3%, and 84.2% for healthy, prediabetic, and diabetic respec-

tively. For males, the healthy precision, prediabetic precision, and diabetic precision is 97.6%, 14.7%,

and 81.3% respectively. The recall is 73.6%, 50.0%, and 89.7% for healthy, prediabetic, and diabetic

respectively.

4.2.2 A2 Only

The analysis was repeated using only the A2 values for each individual. The results of the analysis can

be found in Table 6. Looking at the case of no gender separation, Healthy classification has a precision
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No Gender Separation N = 257

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 139 48 6 0.720
(N = 193)

Prediabetic 3 10 3 0.625
(N = 16)

Diabetic 0 5 43 0.896
(N = 48)

Precision 0.979 0.159 0.827

Females Only N = 149

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 59 20 4 0.711
(N = 83)

Prediabetic 1 5 0 0.833
(N = 6)

Diabetic 0 3 16 0.842
(N = 19)

Precision 0.983 0.179 0.800

Males Only N = 108

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 81 26 3 0.736
(N = 110)

Prediabetic 2 5 3 0.500
(N = 10)

Diabetic 0 3 26 0.897
(N = 29)

Precision 0.976 0.147 0.813

Table 5: Results of Parameter Distribution Biomarker, A1 Only
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(a) Prediabetic Prediction (b) Diabetic Prediction

Figure 30: A1 Parameter Distribution for Prediabetic and Diabetic Individuals.

and recall of 99.1% and 57.0% respectively. The prediabetic classification has a precision and recall of

10.6% and 56.3%, and the diabetic classification has a precision and recall of 52.5% and 66.7%.

When the CDF analysis is performed on the genders separately, we obtain slightly different results.

For females, the healthy precision, prediabetic precision, and diabetic precision is 100.0%, 14.2%, and

50.0% respectively. The recall is 65.1%, 66.7%, and 68.4% for healthy, prediabetic, and diabetic respec-

tively. For males, the healthy precision, prediabetic precision, and diabetic precision is 100.0%, 11.5%,

and 52.8% respectively. The recall is 55.45%, 60.0%, and 65.5% for healthy, prediabetic, and diabetic

respectively.

4.2.3 A1 and A2

After collecting the results from the CDF analysis independently for the A1 and A2 parameters, they

will now need to be combined in order to get a more comprehensive prediction of diabetic status. This

will be performed using the equation below:

k1B+ k2C = D

Where B is a vector containing the area between the individual and the healthy CDF for the parameter

A1, the area between the individual and the prediabetic CDF for the parameter A1, and the area between
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No Gender Separation N = 257

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 110 60 23 0.570
(N = 193)

Prediabetic 1 9 6 0.563
(N = 16)

Diabetic 0 16 32 0.667
(N = 48)

Precision 0.991 0.106 0.525

Females Only N = 149

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 54 18 11 0.651
(N = 83)

Prediabetic 0 4 2 0.667
(N = 6)

Diabetic 0 6 13 0.684
(N = 19)

Precision 1.000 0.143 0.500

Males Only N = 108

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 61 36 13 0.554
(N = 110)

Prediabetic 0 6 4 0.600
(N = 10)

Diabetic 0 10 19 0.655
(N = 29)

Precision 1.000 0.115 0.528

Table 6: Results of Parameter Distribution Biomarker, A2 Only
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the individual and the diabetic CDF for the parameter A1. C is a vector containing the areas between

the individual and the representative CDFs for the parameter A2, D is a vector containing the linear

combinations of the areas, and k1 and k2 are parameters. k1 and k2 will be the same for all individuals

(i.e. will not vary person to person). Expanded, the equation becomes:

k1


A1 Area to Healthy

A1 Area to Prediabetic

A1 Area to Diabetic

+ k2


A2 Area to Healthy

A2 Area to Prediabetic

A2 Area to Diabetic

 =


Total Area to Healthy

Total Area to Prediabetic

Total Area to Diabetic


Which will be denoted as:

k1


bH

bP

bD

+ k2


cH

cP

cD

 =


dH

dP

dD


The predicted diabetic status for each individual will be the class corresponding to the minimum value

in vector D. For example, if after computing the linear combination,

D =


1.1

0.6

2.4


the individual would be predicted to be prediabetic. The absolute areas computed for the A2 parameter

analysis were smaller than the areas computed for the A1 parameter, so the values will be scaled before

computing the linear combination. This was done by converting all the values within B and C to values

between 0 and 1, and all the values within B and C will correspondingly sum to 1. This was done by

dividing each element within B and C by the sum of all the elements in B if the element is in B or the

sum of all the elements in C if the element is in C.

k1 and k2 were determined by finding the values that minimize the number of incorrect diagnoses.

“Incorrect diagnoses” in this context would be an individual with impaired glucose homeostasis (i.e.
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Prediabetic or Diabetic by the diagnostic criteria) who were classified as healthy, or healthy individuals

who were classified as Prediabetic or Type 2 Diabetic. No error was given to Prediabetic individuals who

were classified as Type 2 Diabetic, or for T2D individuals who were classified as Prediabetic, as one of

the intended outcomes for this method is to be used as a screening tool for impaired glucose homeostasis

without having to do blood tests or schedule an appointment with a physician. The number of incorrect

diagnoses were calculated for values between -0.1 and 5 with a step size of 0.01 for both k1 and k2 for

the case in which the genders were not separated, and for when the analysis for females and males were

performed separately. It was determined that the minimum incorrect prediabetic diagnoses for when the

genders were not separated was 6 individuals, for females it was 1 individual, and for males it was 4

incorrect individuals. The optimized k1 and k2 values, in order for no gender separation, females only,

and males only, were k1 = 2.85 and k2 = 0.27, k1 = 3.0 and k2 = 2.1, and k1 = 0.5 and k2 = 3.0.

The results of the analysis can be found in Table 7. Looking at the case of no gender separation,

Healthy classification has a precision and recall of 97.2% and 72.5% respectively. The prediabetic clas-

sification has a precision and recall of 15.0% and 56.3%, and the diabetic classification has a precision

and recall of 81.1% and 89.6%.

When the CDF analysis is performed on the genders separately, we obtain slightly different results. For

females, the healthy precision, prediabetic precision, and diabetic precision is 98.4%, 17.9%, and 84.2%

respectively. The recall is 72.3%, 83.3%, and 84.2% for healthy, prediabetic, and diabetic respectively.

For males, the healthy precision, prediabetic precision, and diabetic precision is 98.8%, 18.2%, 81.3%

respectively. The recall is 75.5%, 60.0%, and 89.7% for healthy, prediabetic, and diabetic respectively.
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No Gender Separation N = 257

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 140 46 7 0.725
(N = 193)

Prediabetic 4 9 3 0.563
(N = 16)

Diabetic 0 5 43 0.896
(N = 48)

Precision 0.972 0.150 0.811

Females Only N = 149

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 60 20 3 0.723
(N = 83)

Prediabetic 1 5 0 0.833
(N = 6)

Diabetic 0 3 16 0.842
(N = 19)

Precision 0.984 0.179 0.842

Males Only N = 108

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 83 24 3 0.755
(N = 110)

Prediabetic 1 6 3 0.600
(N = 10)

Diabetic 0 3 26 0.897
(N = 29)

Precision 0.988 0.182 0.813

Table 7: Results of Parameter Distribution Biomarker, Combination A1 & A2
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Figure 31: Graphical Representation of Precision and Recall Between Diagnostics.
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Prediabetic and diabetic diagnoses can be pooled into a single class (Impaired Glucose Homeostasis,

IGH) and the precision and recall can be evaluated. Results can be seen in 8. If the genders are not

separated, the precision and recall are 97.2% and 72.5% for healthy, and 53.1% and 93.8% for IGH. For

the female only analysis, the precision and recall are 98.4% and 72.3% for healthy, and 51.1% and 96.0%

for IGH. For the male only analysis, the precision and recall are 98.8% and 75.5% for healthy, and 58.5%

and 97.4% for IGH.

Starting with the “No Gender Separation” Case in Table 8, the individuals who were misclassified can

be evaluated. For the four individuals classified as healthy but have impaired glucose homeostasis, two

individuals had OGTT readings that were close to the healthy cutoff (144 and 150 mmol/L), and healthy

FBG (both 93 mmol/L) and HBA1c levels (5.2% and 5.5%). For the other two individuals misclassified

as healthy, the OGTT levels were within healthy ranges (131 and 120 mmol/L), with prediabetic FBG

(102 and 104 mmol/L) and HbA1c (6.7% and 7.1%). For the individuals misclassified as IGH, 30 were

individuals who exclusively had HbA1c measurements (no FBG or OGTT). HbA1c studies have shown

it to have a specificity of 21% for prediabetic individuals, indicating that 21% of individuals classified as

healthy according to HbA1c were actually prediabetic [29]. 21% of healthy individuals who only had an

HbA1c reading was 28.56, so 30 individuals predicted to be prediabetic is right in line with expected val-

ues. 10 individuals misclassified as IGH were within prediabetic levels for either FBG or HbA1c, and the

remaining 13 individuals had no indication of impaired glucose homeostasis from their diagnostic metrics.

For the analysis on female participants, the one individual misclassified as healthy had a borderline

OGTT (144 mmol/L), and healthy FBG and HbA1c (93 mmol/L and 5.2% respectively). Of the 23 indi-

viduals misclassified as IGH, 12 of them exclusively had HbA1c (no OGTT or FBG), which corresponds

to 21.8% of all healthy female individuals. This is in line with the expected 21% of healthy individuals

according to HbA1c actually being prediabetic [29]. 6 individuals were within prediabetic levels for one

of FBG or HbA1c, and the remaining 5 individuals had no indication of prediabetes from their diagnostic

metrics.
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No Gender Separation N = 257

Model Prediction
Diagnosis Healthy IGH Recall

Healthy 140 53 0.725
(N = 193)

IGH 4 60 0.938
(N = 64)

Precision 0.972 0.531

Females Only N = 108

Model Prediction
Diagnosis Healthy IGH Recall

Healthy 60 23 0.723
(N = 83)

IGH 1 24 0.960
(N = 25)

Precision 0.984 0.511

Males Only N = 149

Model Prediction
Diagnosis Healthy IGH Recall

Healthy 83 27 0.755
(N = 110)

IGH 1 38 0.974
(N = 39)

Precision 0.988 0.585

Table 8: Results of Parameter Distribution Biomarker, Combination A1 & A2. IGH is Impaired Glucose
Homeostasis.
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For the analysis on male participants, the individual misclassified as healthy had a borderline predi-

abetic OGTT (150 mmol/L) and healthy FBG and HbA1c (93 mmol/L and 5.5% respectively). Of the

27 individuals classified as IGH, 15 of them only had an HbA1c measurement (17.4 % of healthy individ-

uals with only HbA1c reading), and 4 individuals had either a prediabetic FBG reading or HbA1c. The

remaining 8 males had no indication of prediabetes or impaired glucose homeostasis according to their

diagnostic metrics.
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Figure 32: Confidence Score Schematic

4.2.4 Confidence Calculation

An additional feature that can be added to the analysis is a confidence score, or how confident the

classification is that the prediction is correct. This was implemented by creating a score between 0.5 (50%

confident) and 1.0 (100% confident) for each classification. If the confidence score was 0.5, the individual

was equidistant to two classes, or equally likely to be a part of either class, and if the confidence score

is 1.0, the individual distribution was exactly equal to the predicted class distribution. Furthermore, if

the closest distance was half of the next closest distance, the confidence score was 0.67, and if the closest

distance was one third the distance of the next closest distance, the confidence score was 0.75. This is

demonstrated in Figure 32. The confidence score was calculated as follows:

Confidence Score =
1

2

d2 − d1
d2 + d1

+
1

2

Where d1 is the smallest area of the individual distribution to the representative distributions and d2 is

the second smallest area.
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When this score is applied to the method, the misclassified individuals can be evaluated further. Of the

13 individuals in the implementation where gender was not separated, “Prediabetic” was the closest dis-

tribution and “Healthy” was the next prediction for 11 individuals, and all confidence scores were under

75%. For the 5 females without an indication of glucose homeostasis dysfunction, 4 of them had “Predi-

abetic” as the closest distribution and “Healthy” as the next closest distribution, and all the confidence

scores were below 70%. One individual had “Prediabetic” as the closest distribution and “Diabetic”

as the next closest with a confidence score of 74%. For the 8 males who had no indication of glucose

homeostasis dysfunction, 5 individuals were predicted to be “Prediabetic” with the next closest distribu-

tion “Healthy” and confidence scores below 70%. 2 individuals were predicted to be “Prediabetic” with

“Diabetic” as their next prediction, and 1 individual was predicted to be “Diabetic”.

4.2.5 Extension

Now that the biomarker method has been implemented with the above data, it can be tested on the ex-

cluded Stanford Study data and individuals who were within prediabetic ranges for their HbA1c, but did

not have other metrics to validate. The results of the Stanford Study Biomarker analysis can be found

in Table 9. The parameter values were set to be equal to the optimized parameter values determined in

the previous section, so that k1 = 2.85 and k2 = 0.27.

The results of individuals classified as prediabetic according to HbA1c can be seen in Table 10. The

parameter values were kept the same as calculated previously, so for no gender separation, females only,

and males only, k1 = 2.85 and k2 = 0.27, k1 = 3.0 and k2 = 2.1, and k1 = 0.5 and k2 = 3.0 respectively.
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No Gender Separation, Stanford N = 54

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Healthy 16 21 2 0.410
(N = 39)

Prediabetic 0 5 6 0.455
(N = 11)

Diabetic 0 1 3 0.750
(N = 4)

Precision 1.000 0.185 0.273

Table 9: Results of Parameter Distribution Biomarker, Combination A1 & A2, Stanford Study.

No Gender Separation

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Prediabetic 17 24 9 0.480
(N = 50)

Females Only

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Prediabetic 5 6 1 0.500
(N = 12)

Males Only

Model Prediction

Diagnosis Healthy Prediabetic Diabetic Recall

Prediabetic 12 18 8 0.474
(N = 38)

Table 10: Results of Parameter Distribution Biomarker, Combination A1 & A2, HbA1c indicated Predi-
abetic.
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No Gender Separation, Stanford N = 54

Model Prediction
Diagnosis Healthy IGH Recall

Healthy 16 23 0.410
(N = 39)

IGH 0 15 1.000
(N = 15)

Precision 1.000 0.395

Table 11: Results of Parameter Distribution Biomarker, Combination A1 & A2, Stanford Study Impaired
Glucose Homeostasis (IGH).

The prediabetic and diabetic groups can again be combined to form the “Impaired Glucose Homeosta-

sis” group. Results can be seen in Table 11 and 12. For the Stanford dataset in Table 11, precision

was 100.0% for healthy individuals, and 39.5% for prediabetic individuals. Recall was 41.0% for healthy

individuals and 100.0% for prediabetic individuals.

For the prediabetic individuals defined by their HbA1c in Table 12, the accuracy of the prediabetic

classification was 66.0% for the case in which genders were not separated, 53.8% accurate for females,

and 68.4% accurate for males.
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No Gender Separation, HbA1c Prediabetic
Model Prediction

Diagnosis Healthy IGH Recall

Prediabetic 17 33 0.667
(N = 50)

Females Only
Model Prediction

Diagnosis Healthy IGH Recall

Prediabetic 5 7 0.583
(N = 12)

Males Only
Model Prediction

Diagnosis Healthy IGH Recall

Prediabetic 12 26 0.684
(N = 38)

Table 12: Results of Parameter Distribution Biomarker, Combination A1 & A2, HbA1c indicated Predi-
abetic, Impaired Glucose Homeostasis (IGH).
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4.3 Discussion

The main objective of the thesis was to use the parameter results from model fitting as a metric to

classify individuals as prediabetic or type 2 diabetic. Both methods implemented in this section provide

a reasonable biomarker for glucose homeostasis and diabetic status classification for individuals with

Type 2 Diabetes. However, both methods have their limitations and inaccuracies.

Starting with the single value biomarker, the implementation was very effective at separating individuals

with a normal glycemic profile from those with type 2 diabetes, particularly for when genders are sepa-

rated. The one type 2 diabetic male that did appear to be in diabetic biomarker range had conflicting

diagnostics (one healthy, one prediabetic, one diabetic), so it is entirely possible that the biomarker

value being within healthy/ prediabetic ranges was accurate. For the most part, as the biomarker value

increased, the diabetic status of the individual also increased, where individuals on the left were more

likely to be healthy and individuals on the right were diabetic. Prediabetic individual biomarker values

are between the healthy and diabetic biomarker values, with most prediabetic individuals falling in the

upper range of normal. However, predicting more incidences of prediabetes was less effective, as more

than 70% of healthy individuals would be predicted to be prediabetic if the minimum biomarker value

was used. Although this is potentially useful for pre-screening purposes and providing a continuous

metric of glucose homeostasis, it isn’t very practical to assume more than half of the healthy population

is actually prediabetic.

Physiologically, there is not much difference between an individual who has an OGTT result of 199

and 201 [30]. However, the first individual would be classified as “Prediabetic” according to medical

guidelines for OGTT results, and the second individual would be classified as “Type 2 Diabetic”. The

thresholds for OGTT were set based off of a statistical increase in risk of adverse outcomes, such as

increased morbidity or mortality [31]. So, the lack of complete separation between individuals is to be

expected. Furthermore, there was no standardization between participants in terms of study protocol -
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all individuals just lived their lives normally and ate anything they wanted during the two week study,

compared to tests like OGTT that have a standardized time and glucose amount. Type 2 diabetes can

be regulated through diet [32], so if an individual was diagnosed diabetic through the diagnostic metrics

but limited their sugar intake during the course of the study, they may appear to have a “more effective”

glucose homeostasis than an individual who had healthy diagnostics but ate sugar continuously for the

two week period.

For the parameter distribution biomarker, results improved for each iteration of the method that was

implemented. Implementing the combination of A1 and A2 distance prediction resulted in a higher pre-

cision and accuracy for all classes, and fewer individuals with impaired glucose homeostasis (prediabetic

or diabetic) were predicted to be healthy. Further method implementation of a confidence score was also

effective. Of the total number of incorrect predictions, 87.6% had the correct class as the second closest

prediction, with less than 75% confidence in the first predicted class.

Prediabetic and diabetic individuals were successfully separated from the healthy population for 93.3%

(no gender separation), 95.0% (female only analysis), and 97.4% (male only analysis) of prediabetic and

T2D individuals in the final implementation of the parameter distribution biomarker. A significant pro-

portion of healthy individuals were classified as having impaired glucose homeostasis. For females, 27.7

% of healthy individuals were classified as prediabetic or diabetic, 24.5% of healthy males were classified

as prediabetic or diabetic and 27.5 % healthy individuals were classified as prediabetic or diabetic for

the analysis that did not separate by gender. Comparing this to the single-value biomarker, where no

gender separation, males, and females had 74.8%, 72.6%, and 61.9% respectively of healthy individuals

within prediabetic range (above the minimum prediabetic biomarker value), the parameter distribution

biomarker is much more effective and distinguishing between the two classes. Male and female separation

while performing the analysis had a much more distinct effect in the parameter distribution biomarker

results. Precision and recall for all classes increased compared to the analysis that did not separate based

on gender. One particular benefit to separating the genders was that fewer prediabetic individuals were
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misclassified as healthy.

The intention of this work was to create a screening tool that would be an easy way to predict dys-

functional glucose homeostasis. A high number of false negatives would invalidate the results, more so

than a larger proportion of false positives. A false positive gives the individual the impression that they

are free from a disease, and are less likely to follow up with a more accurate test (in the case of glucose

homeostasis, an OGTT) [33]. Not only does this delay diagnosis, but it increases the risk of morbitity or

mortality from the disease [31, 34]. False negatives may also lead to lawsuits depending on the severity

and outcomes of a disease [33]. On the other hand, false positives may result in unnecessary visits to

the physician and more invasive diagnostic tests. False positives may also increase an individual’s psy-

chological stress unnecessarily [33].

Ideally, a screening tool has a sensitivity (proportion of true positives) and specificity (proportion of

true negatives) of 1.0. However, these value is rarely achieved by today’s screening tools [33]. When

looking specifically at the case of type 2 diabetes screening, a high sensitivity is much more important

than a high specificity, as it is much less costly to flag individuals with potentially having diabetes than

to miss the cases altogether [35]. The sensitivity and specificity of the parameter distribution biomarker

method are the recall for individuals with impaired glucose homeostasis and healthy individuals respec-

tively. In all cases (gender separation vs no gender separation), sensitivity was greater than 0.9 (for

the cases of gender separation it was greater than 0.95), and specificity was greater than 0.7. This is

in line with current screening tests for various diseases [33]. For type 2 diabetes diagnostic metrics in

particular, compared to OGTT, HbA1c identifies diabetic individuals with a sensitivity 50% (95% CI:

42–59%) and 97% (95% CI: 95–98%) [36], and the sensitivity and specificity of prediabetes using HbA1c

is even worse at 49% (95% CI: 40-58%) and 79% (95% CI: 73-84%) [29]. FBG identifies diabetic indi-

viduals with a sensitivity of 59.4% (95% CI: 46.6–71%) and specificity of 98.8% (95% CI: 96.5–99.6%)

compared to OGTT [36]. Prediabetic individuals are identified using FBG with a sensitivity of 25%

(95% CI: 19-32%) and specificity of 94% (95% CI: 92-96%) [37]. Compared to the two existing metrics,
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the parameter distribution biomarker method is much more sensitive and slightly less specific, which

will flag more individuals as being at risk for type 2 diabetes but will not miss as many individuals who

actually have glucose homeostasis dysfunction. Additionally, CGM devices are much less invasive than

going to a physician and doing a blood test, and data can be collected as individuals go about their daily

routines. As such, the parameter distribution biomarker appears to be a viable screening tool for type 2

diabetes and prediabetes.

The analysis performed on the participants of the Stanford Study had mixed results. The method

(using the optimized parameters for the test data set) had a precision of 1.0 for healthy classification,

so no individuals were predicted to be healthy who were not actually healthy. However, a much higher

proportion of healthy individuals were predicted to be prediabetic or diabetic, consisting of 59.0% of

healthy individuals predicted to have some form of dysfunctional glucose homeostasis. Again, it is not

practical to flag this many individuals as being at risk for type 2 diabetes, so more refinement of the

technique is needed to increase the specificity. That being said, of the 23 healthy individuals incorrectly

labelled as prediabetic or diabetic, 20 participants (86.9% of all mislabelled healthy individuals) had the

correct class as the second closest prediction, with less than 75% confidence in the first predicted class.

Furthermore, 14 of the 23 participants (60.9%) had a confidence score below 60%.

When looking at the individuals with prediabetic HbA1c metrics (but no other diagnostic methods),

the accuracy of the results of the parameter distribution biomarker appear low, with only 48 % of indi-

viduals being classified as prediabetic for the case of no gender separation, 50 % of individuals classified

as prediabetic for the female-only analysis, and 47% of individuals classified as prediabetic for the male-

only analysis. However, HbA1c alone has been shown to have a 0.49 sensitivity (95% CI 0.40 and 0.58),

indicating that HbA1c alone will accurately predict prediabetes only 49% of the time [29]. Thus, the

proportion of prediabetic predictions are right in line with expected values. In order to be confident that

the proportions are accurately representative of the sample population, further tests would have to be

performed on these individuals (such as OGTT) to confirm.
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In both the single value biomarker and the parameter distribution biomarker, it was difficult to distin-

guish between healthy individuals and prediabetic individuals. This may in part be due to the definition

of prediabetes. Prediabetic individuals have glycemic results that are above normal but below type 2

diabetic thresholds. Although there are some risk factors associated with this division of individuals

(such as nephropathy and increased risk of macrovascular disease), it is essentially just a high risk state

for type 2 diabetes. Annually, 5-10% of individuals with prediabetes will progress to type 2 diabetes,

but a similar quantity will convert back to normal glycemic levels [32]. Furthermore, the ADA estimated

that up to 70% of individuals with prediabetes will eventually develop type 2 diabetes, however there

is a 40-70% reduction of risk of progressing to type 2 diabetes if the individual undergoes a lifestyle

modification to increase exercise and eat healthier [32]. There is no way to determine if a prediabetic

individual in this study will progress to type 2 diabetes or revert back to normal without following them

and their diabetic status in a longitudinal study.

One difficulty that emerged when working with individuals with impaired glucose homeostasis was the

lack of a ”ground truth”. Diabetes guidelines provide the thresholds for traditional diagnostic methods

such as OGTT, HbA1c, and FBG. However, these metrics can indicate conflicting results. For example,

a few individuals in the first Klick Followup Study were healthy in one metric, prediabetic in another,

and diabetic in a third. Specifically, one individual had an OGTT of 131 mg/dL (within healthy range),

FBG of 102 mg/dL (within prediabetic range) and HbA1c of 6.7% (within diabetic range). Just looking

at the diagnostic metrics does not provide the diabetic status of the individual, and the diagnostics may

contradict each other. A biomarker that is correlated with multiple diagnostic methods may be useful

in evaluating these more ambiguous cases.

Up to 50% of individuals with diabetes have not been diagnosed, and some individuals may remain

undiagnosed for up to 12 years [38]. This implementation, either the single value biomarker or the pa-

rameter distribution biomarker, may be useful in this case as a screen. If the results give “Prediabetic”
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or “Diabetic”, the individual could schedule an appointment with a physician in order to take an OGTT

and give a more accurate classification and diagnosis.
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5 Conclusion

5.1 Model Potential

Overall, there is definite promise to using a proportional-integral controller to mathematically model an

individual’s glucose homeostasis. Two biomarkers of diabetic status and glucose homeostasis function

were created from parameter results obtained from model fitting. It was shown that these biomarkers

have reasonable accuracy and are able to separate healthy individuals from individuals with impaired

glucose homeostasis. The most inaccurate part of both biomarker methods was incorrectly identifying too

many healthy individuals as prediabetic or diabetic. However, if this method was indeed implemented as

a pre-screen for glucose homeostasis, fewer individuals who were actually prediabetic or type 2 diabetic

would be missed, and healthy individuals who may be borderline prediabetic may be identified sooner.

The benefit to this implementation is the convenience of the analysis and results. The procedure is

almost completely non-invasive, with the individual only having to put on a CGM and not be subjected

to any blood tests for glucose readings or hormone levels. There is no need for the individual to fast

or be subjected to any other food restrictions, and the individual can carry out their day-to-day life as

normal. Additionally, the analysis can be performed locally on a personal device or computer. This will

allow more individuals to evaluate their own glucose homeostasis and determine if they should seek the

professional opinion of a physician. The aim would be to screen more individuals for being at risk for

type 2 diabetes and begin prevention as early as possible to prevent disease progression.

5.2 Limitations

There are a few limitations for using a CGM method as a potential diagnostic or screening tool for T2D

and prediabetes. In the current way that the model is implemented, there is no standardized meals or
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sugar intake for participants. This has the benefit of not disrupting an individual’s day-to-day life, how-

ever the overlap between healthy individuals and prediabetic individuals may start to be more obvious.

It may be beneficial to apply the model to a standardized procedure in order to evaluate the differences

in model fit.

Another limitation of this research was the disproportionate representation of healthy individuals in

the analysis. The intention of the data collection was to have a even split of healthy, prediabetic, and

diabetic individuals, but with the screening method implemented to enroll participants (CANRISK score

for diabetic risk) the enrollment tended to be heavily skewed towards healthy individuals.

A final limitation of the research was the data collection location. The data collected in the two Klick

Followup studies was exclusively collected from individuals from India. Although the Klick Pilot study

was collected from Toronto, Ontario and the Stanford dataset was collected from individuals in Califor-

nia, USA, the majority of individuals was from a specific region and demographic. No discrepancies were

observed between datasets, but it would be beneficial to evaluate more individuals from other regions of

the world.

5.3 Future Work

Future work for this project involves fine-tuning the procedures and implementation of the biomarker

methods. One avenue to pursue is implementing a machine learning approach to find the ideal cutoffs

for the single-value biomarker and find the parameters that minimize the incorrect predictions for the

parameter distribution biomarker. Another feature that can be added to the analysis is implementing a

way to incorporate an individual’s average glucose values or glucose baseline in the parameter distribu-

tion biomarker in an attempt to obtain a better specificity.

Furthermore, it would be interesting to conduct a longitudinal observational study to evaluate how

94



an individual’s homeostasis would evolve over time. This study could also be used to compare the

current biomarkers to diabetes progression or regression back to normal glycemic activity. Additionally,

interventions could be evaluated for effectiveness if biomarker values change before and after intervention

implementation.

Finally, the homeostasis profiles could be evaluated and the individuals could potentially be grouped

into different clusters depending on their model results. The idea behind this stems from the possibility

that some individuals may be more likely to experience glucose homeostasis dysfunction if they are a

member of a specific group.
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Appendices

A Bootstrapping

Bootstrapping is the term used to describe any metric or calculation that uses random sampling with

replacement. When taking the bootstrap mean, a subpopulation of N data points was randomly sampled

with replacement from the whole population. The arithmetic mean was calculated from this subpopu-

lation and stored. This process was repeated M times. After the random sampling was repeated, the

arithmetic mean of the means calculated from the subpopulations was calculated. This final calculation

represents the bootstrap average.

The method employed in this study calculates the bootstrap average for each individual in an attempt

to reduce any outlier peaks or model fitting. After doing the calculation, the resulting summary statistic

will give a more robust depiction of the individual parameter means.

For each individual, the number of data points that were randomly sampled with replacement, N, was

equal to the number of selected peaks, or the length of the array containing the parameter values. M, or

the number of times the process was repeated, was set to be equal to 20.
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B Accuracy, Precision & Recall

Before discussing precision and recall in classification, it is important to understand the difference be-

tween true positives, true negatives, false positives and false negatives. A true positive is when both

the predictive value and the actual value are positive, or when the data point is correctly classified as

positive. A true negative is when both the predictive value and the actual value are negative, or when

the data point is correctly classified as negative. A false positive is when the actual value is negative

but the predicted value is positive. A false negative when the actual value is positive but the predicted

value is negative. Take for example, the classification of individuals with type 2 diabetes and individuals

without type 2 diabetes (i.e. healthy individuals and prediabetic individuals). A true positive would

occur when the classification correctly identifies an individual with type 2 diabetes. A true negative

would occur when the classification correctly identifies an individual without type 2 diabetes. A false

positive would occur when the classification incorrectly predicts someone to have type 2 diabetes when

they do not, and a false negative would occur when the classification incorrectly predicts someone to not

have type 2 diabetes when they actually do have type 2 diabetes.

One of the most common ways to analyze a classification problem is to calculate the accuracy. The

accuracy is defined as the proportion of true positives and true negatives to the total number of individ-

uals. This can be calculated as follows:

Accuracy =
tp + tn

tp + tn + fp + fn

Where tp is the number of true positives, tn is the number of false negatives, fp is the number of false

positives, and fn is the number of false negatives. This metric summarizes the total number of correct

predictions by the classification.

Other common ways to analyze the effectiveness of the classification is to calculate the precision and
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recall. Recall is the true positive rate, or the sensitivity of the classification, and is calculated as follows:

Recall =
tp

tp + fn

Precision is the positive predictive value. This calculates the proportion of positive results that are true

positives in the calculation, and is calculated as follows:

Precision =
tp

tp + fp
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