
ON MATRIX-FREE

PSEUDO-ARCLENGTH

CONTINUATION METHODS APPLIED

TO A NONLOCAL PDE IN 1+1D WITH

PSEUDO-SPECTRAL TIME-STEPPING

By

Mitchell Kovacic

Faculty of Science, University of Ontario Institute of Technology

July 4, 2013

A thesis submitted to the

University of Ontario Institute of Technology

in accordance with the requirements of the degree

of Master of Science in the Faculty of Science

Abstract

In this thesis we examine a recent animal aggregation model which describes the

evolution of two populations of animals moving on a 1-dimensional spatial domain

differing only by the direction they travel. The equations describing the evolution of

the populations is a hyperbolic, nonlocal partial differential equation with periodic

boundary conditions. [9]

We apply pseudo-spectral methods to numerically integrate initial states of the

populations given as small perturbations from a homogeneous steady state from which

bifurcations and dynamics have been studied from a linear and weakly nonlinear anal-

ysis perspective. [10, 11] The existence of transcendental nonlinearities within the

equations make this application of pseudo-spectral methods interestingly nontrivial

and simulations do display dynamics similar to those observed in Eftimie et al. [9]

Finally we apply matrix-free, pseudo-arclength continuation methods, with con-

sideration given to symmetries within the model, in an attempt to trace curves from

known equilibria to more dynamically exotic regions of parameter space. The flow

operator is used to condition the Newton systems arising from the continuation and to

allow for matrix-free continuation. [13] However, unforeseen degeneracies arise within

the Newton system which necessitates further research in order to build a robust con-

tinuation software.

ii

Acknowledgements

First and foremost I would like to thank my supervisors, Dr. Pietro-Luciano Buono

and Dr. Lennaert van Veen, for their support, guidance, and time. Special thanks

goes out for their making of time and promptness as deadlines encroached.

I would also like to thank my parents, Mr. Gary Kovacic and Ms. Theresa Gallant,

for financial support, for having a place for me to live without the need to go into debt

with rent, and their love and support. I also thank my friends throughout the world

whom have given me life experience, comfort, support, and friendships that shall surely

extend throughout my life.

Furthermore I would like to thank my colleagues and superiors within the Faculty

of Science whom assisted me with friendship, support, and guiding conversations which

invariably led to insights I may not have reached without. I also thank the Ontario

Ministry of Training, Colleges, and Universities for the Ontario Graduate Scholarship

which funded me during the first year of my Masters program.

Lastly I would like to thank University of Ontario Institute of Technology for

taking me into their Masters program, for giving me a place to work in comfort, and

for offering me opportunities such as teaching assistantships to support me financially.

iii

Author’s Declaration

I declare that this work was carried out in accor-

dance with the regulations of the University of Ontario

Institute of Technology. The work is original except

where indicated by special reference in the text and no

part of this document has been submitted for any other

degree. Any views expressed in the dissertation are

those of the author and in no way represent those of the

University of Ontario Institute of Technology. This doc-

ument has not been presented to any other University for

examination either in Canada or overseas.

Mitchell Kovacic

Date: July 4, 2013

iv

Contents

Abstract ii

Acknowledgements iii

Author’s Declaration iv

1 Introduction 1

2 The hyperbolic PDE model 4

2.1 Introduction of model and dynamics exhibited 4

2.2 The homogeneous steady state and symmetries of the model 9

2.3 Spatial contraction and problem reformulation 13

3 Pseudo-spectral time-stepping 18

3.1 Motivation . 18

3.2 The Discrete Fourier Transformation and the Coefficients 21

3.3 Convergence and advantages of pseudo-spectral methods 25

3.4 Known sources of potential error . 27

3.4.1 Aliasing errors . 27

3.4.2 Gibb’s phenomenon . 31

4 Time stepping the system and the first variational equation 34

4.1 Applying the Fourier transform to the PDE 34

4.2 Computation of nonlinear terms . 37

4.3 Temporal discretization and initial condition of time-stepping 39

4.4 The first variational equation . 41

v

Contents

4.4.1 Explanation and derivation . 41

4.4.2 Time-stepping the first variational equation 47

4.5 Validation tests of time-steppers . 49

5 Continuation methods 63

5.1 Motivation and framework . 63

5.2 Use of the flow operator and concern of symmetries 67

5.3 Matrix-free continuation methods . 69

5.4 Results and more degeneracy . 73

6 Conclusions and future work 77

Bibliography 81

vi

List of Figures

1.1 A school of fish with a very steep density gradient (left, Taken from

http://aquariumprosmn.com/2010/01/460/ July 2nd, 2013 from a post-

ing by Rodney Campbell) and a flock of birds arranged in an essentially

1-dimensional curve (right, Taken from www.seattleaudubon.org/sas/

LearnAboutBirds/SeasonalFacts/CanadaGeese.aspx July 2nd, 2013 where

it states photo was taken by Russel Link.) 2

2.1 Form of interaction terms for the five models describing how attraction

(a), repulsion (r), and alignment (al) forces affect individuals. Taken

from Eftimie et al. [9] . 5

2.2 Shape and location of Gaussian kernels in interaction integrals. No-

tice repulsion having its largest influences at very close distances while

attraction has its largest influences at longer distances. Taken from

Eftimie et al. [11] . 6

2.3 Turning function without and with a shift taking the total interaction

y± as input, which is a sum of the attraction, repulsion, and alignment

forces. This function determines the turning rates of individuals. Taken

from Eftimie et al. [11] . 7

2.4 A visualization of how λ+, the rate of originally right-moving individuals

turn to the left, receives information from neighbours behind x− s and

in front x+ s of the reference individual at x in the five models. Taken

from Eftimie et al. [9] . 8

vii

List of Figures

2.5 Dynamics observed from simulations done by Eftimie et al. Plots show

the total density of populations at points in space and time. Stationary

pulses (top left), traveling pulse (top center), traveling breathers (top

right), ripples (bottom left), zigzag pulses (bottom center), feathers

(bottom right). Space is along the x-axis with time along the y-axis.

Taken from Eftimie et al. [9] . 10

2.6 Hopf and steady state bifurcation curves in (qa, qr) space with qal = 0

for M4. The homogeneous steady state is stable for parameter values

within the lower left region which is contained by all curves. Taken

from Eftimie et al. [4] . 12

3.1 Comparison of the same initial condition evolved to two different times.

Space is on the x-axis with time on the y-axis. Visualized is the total

density of populations at points in space and time. 19

3.2 A function shown with N = 216 grid points (top left) along with a

pseudo-spectral approximation to the derivative with N = 28 (top

right), a finite difference approximation to the derivative with N = 28

(bottom left), and another finite difference approximation to the deriva-

tive with N = 214. Global errors of pseudo-spectral approximation and

finite difference approximation with N = 214 are O(10−4) while global

error of finite difference approximation with N = 28 is O(10−2). 20

3.3 Comparison of two solutions evolved with different parameter values,

showcasing the possibility of steep gradients for some solutions. Space

is on the x-axis and plots show the final time density distribution of

populations. 21

3.4 Three functions in real space (top) and in their power spectrums (bot-

tom). Note that k on the x-axis for the power spectrums is associated

with ûk−1 in order to include the 0th wave number on the logarithmic

axes. One notices that the more nonsmooth the functions are the more

energy is in their power spectrums. 23

viii

List of Figures

3.5 A well resolved solution (top left) and its power spectrum (bottom left)

compared with a poorly resolved solution (top right) and its power

spectrum (bottom right). 26

3.6 Two Fourier basis functions which are equal on every grid point. Taken

from Trefethen. [15] . 28

3.7 Real space representation of u (top) along with power spectrum (bottom). 29

3.8 Real space representation of w = u2 (top) along with power spectrum

(bottom). Notice the quadratic nonlinearity needs twice the grid points

to be properly resolved when compared to Figure 3.7. 29

3.9 Power spectrum of solution (left) along with the final time plot of den-

sity distributions (right) for a simulation is showing signs of aliasing

errors as can be seen by the polynomial decay of the power spectrum.

A Gibb’s phenomenon type error is also showing signs as ripples are

evident on density distributions. 31

3.10 Fourier approximations truncated to the nth wave number compared

with the true discontinuity. Notice the ripples retain a finite ampli-

tude but become more localized to the discontinuity. Taken from

http://www.charlesgao.com/en/?p=136 July 3rd, 2013. 32

3.11 Comparison between a total interaction term, y, from simulations (left),

and the same term passed through the shifted hyperbolic tangent, tanh(y−

y0) (right). The steep gradients of tanh(y− y0) could cause Gibb’s phe-

nomenon type errors. 33

4.1 Unfiltered random noise (left) compared with filtered random noise

(right). Filter is exp
(
−k 2

3

)
with post-processing in order to retain

amplitude and mean. 41

4.2 Several points around a Hopf-steady state bifurcation curve crossing

(top left) along with dynamics observed. Plots show the total density

at a point in space and time. Taken from Eftimie et al. [4] 49

ix

List of Figures

4.3 Simulations of point 1 (top left), point 4 (top middle), point 6 (bottom

left), point 9 (bottom middle), and point 10 (right). Space is on the

x-axis with time on the y-axis. Plots show total density at a point in

space and time. Note the resemblance to dynamics observed in Figure 4.2. 50

4.4 Several dynamics from our simulations showcasing similarity to dynam-

ics observed in Figure 2.5. 51

4.5 Initial conditions of tests of the time-stepper for Equation 4.4.5 (left),

results from test within the stability region of the homogeneous steady

state (middle), and results from test outside the stability region of the

homogeneous steady state (right). Bottom plots show the density dis-

tributions of perturbations and top plots show the density distributions

of populations. 53

4.6 Error dependence on the number of grid points (top) along with error

dependence on the time-step size (bottom) for homogeneous states with

0.01 amplitude perturbations and (qa, qr, qal) = (−1, 2, 0) with finite

difference tests. 55

4.7 Error dependence on the number of grid points (top) along with error

dependence on the time-step size (bottom) for inhomogeneous constant-

valued states with 0.01 amplitude perturbations and (qa, qr, qal) = (−1, 2, 0)

with finite difference tests. 56

4.8 Error dependence on the number of grid points (top) along with error

dependence on the time-step size (bottom) for squared sine and cosine

states and (qa, qr, qal) = (−1, 2, 0) with finite difference tests. 57

4.9 Error dependence on the number of grid points (top) along with error

dependence on the time-step size (bottom) for homogeneous states with

0.01 amplitude perturbations and (qa, qr, qal) = (−1.3, 2.1, 3.6) with fi-

nite difference tests. 58

x

List of Figures

4.10 Error dependence on the number of grid points (top) along with er-

ror dependence on the time-step size (bottom) and for inhomogeneous,

constant-valued states with 0.01 amplitude perturbations and (qa, qr, qal) =

(−1.3, 2.1, 3.6) with finite difference tests. 59

4.11 Error dependence on the number of grid points (top) along with error

dependence on the time-step size (bottom) and for squared sine and

cosine states and (qa, qr, qal) = (−1.3, 2.1, 3.6) with finite difference tests. 60

4.12 Approximate errors of finite difference approximations to Df(w, dq`)
T

along with comparison of best finite difference approximation to result

from time-stepping Equation 4.4.5, 1.8996e− 07, as title. 62

5.1 A curve of solutions along with another curve branching from it at

some critical parameter value. Fictitious depictions of the shape of the

solution is given at 3 points as blue curves in the black boxes. Notice

how we can characterize the different observable dynamics dependent

on the parameter with this plot. 64

5.2 Visualization of one iteration of pseudo-arclength continuation with the

black curve as the true curve of solutions. Prediction extends a distance

∆s along the tangent and then correction iteratively updates the guess

in an orthogonal direction until it is close enough in some measure. . . 66

5.3 Four equilibria shown top as their final time density distributions of

populations and the spectrum for perturbations of the instantaneous

Jacobian of Equation 2.3.5 about these equilibria on the bottom. Notice

that for more exotic dynamics the spectrum gains more eigenvalues with

positive real part. 68

5.4 Power spectrum of solution (left) along with final time density distribu-

tion plot of populations (right). Notice the large number of grid points

required to resolve the power spectrum well. 70

xi

List of Figures

5.5 Power spectrum (left), total density plot through time (middle), and

final time plot of density distributions (right) of the three bump equi-

librium. 74

5.6 Power spectrum (left), total density plot through time (middle), and

final time plot of density distributions (right) of the corrected three

bump equilibrium. 74

5.7 Newton residuals of the corrector algorithm applied to the three bump

equilibrium (left) along with GMRES residuals for the solution of the

Newton system on each update iteration (right). 75

5.8 Seven degenerate eigenvalues of the Jacobian of the flow operator with

their associated eigenfunctions. 76

6.1 Homogeneous steady state (top left), one bump (top middle), two bump

(top right), three bump (bottom left), double zigzag (bottom middle),

and triple feather (bottom right) equilibria. 78

xii

List of Tables

2.1 Description and values of fixed parameters of Equation 2.1.1. 9

xiii

Chapter 1

Introduction

Animal aggregation is the locomotion of animals resulting in pattern formation. Un-

derstanding animal aggregation can have serious benefits as the ideas can be applied

to pest swarming, human food supply availability, disease transmission, and robotic

algorithms. [14] If we better understand the forces and mechanisms that make ani-

mals organize themselves then it could help us to notice signs of harmful aggregation

and thus be able to take steps to counteract said mechanisms which cause this change.

These are the practical reasons for understanding animal aggregation but besides these,

Figure 1.1 shows a few examples of different aggregations which are interesting from a

mathematical framework. We can identify steep changes in density gradient and what

are essentially 1-dimensional curves of animals within 3-dimensional space.

It is clear that understanding how these patterns form is interesting from both a

practical and a mathematical framework. In the pursuit of understanding, we suggest

models that we believe represent approximations to the mechanisms that create these

patterns and as with most things we start simple. The prototypical predator-prey

models often taught in classes as an introduction to differential equations are examples

of such starting places. However these equations only describe the population sizes

and does not begin to get into the patterns the animals form.

Discrete, Lagrangian models that simulated each individual within a population

under the action of interaction forces were likely the first models introduced that could

produce patterns of animal aggregation, analogous to simulations done in physics

where particles interacting under electro-magnetic or gravitational forces would be

simulated within computers. These Lagrangian models were derived as gradient flows

of pair-wise interaction energies describing attraction-repulsion forces. Attraction in

1

Chapter 1. Introduction

Figure 1.1: A school of fish with a very steep density gradient (left,
Taken from http://aquariumprosmn.com/2010/01/460/ July 2nd, 2013 from a
posting by Rodney Campbell) and a flock of birds arranged in an es-
sentially 1-dimensional curve (right, Taken from www.seattleaudubon.org/sas/
LearnAboutBirds/SeasonalFacts/CanadaGeese.aspx July 2nd, 2013 where it states
photo was taken by Russel Link.)

this case is the nature of some living things to congregate with members of its own

kind, for protection as an example, while repulsion acts to prevent collisions between

members. [3] A Morse or Lennard-Jones interaction kernel is typically used in these

attraction-repulsion cases to measure the pair-wise interaction energies between indi-

viduals. [3, 14]

Observations from data agree qualitatively with these discrete, pair-wise models

and these sorts of models became more widely known as swarm dynamics. [14, 6]

Eventually continuum models, where the populations are defined as densities through

space instead of individuals, were derived from these discrete models in the limit as the

number of individuals approached infinity. [2] From here convolutions of these densities

of individuals with the interaction kernels became the measurements of attraction-

repulsion effects which then affected velocities or turning rates of the populations. [14,

6]. Alignment, the coordinated movement of populations which is achieved when

individuals react to neighbour movements, became more prevalent in models along

with terms to account for restrictive conditions on the way information is received,

such as a limited field of vision. [5]

2

The models introduced by Eftimie et al. [9], are the next step in this process of

continual refinement. They consider two populations, different only in their direction

of travel, living on a 1-dimensional spatial domain. The models include convolution

terms with kernels for attraction, repulsion, and alignment forces under five different

scenarios for which information can be received and, in addition, these kernels are

different from previous work in that they are Gaussian. Furthermore, the turning

rates of these populations is determined by a smooth, monotonic turning function

of the interaction forces coming from the convolutions, where in other models the

convolutions typically enter as the velocity term in a transport equation. [2]. This

added complexity of the models generates a wide range of interesting dynamics that

are not fully understood.

The first reason for this thesis is to attempt to investigate how these dynamics

depend on the parameters describing the magnitudes of attraction, repulsion, and

alignment forces. The goal being to say general statements like, if you only have

large attractive forces then population density distributions tend to be tightly packed,

or, if you only have large repulsive forces then population density distributions tend

to homogeneous states. These are simple examples but more interesting dynamics

are much harder to characterize in such a way and necessitate the use of numerical

methods.

But there is another reason these equations interest us. The same terms, convo-

lutions and hyperbolic tangent turning functions which more seem to generate the

wider range of dynamics, are also the terms that make these equations harder to deal

with numerically. Even worse, the equations do not have a Laplace or similar operator

which are known to smooth the solutions and furthermore there are symmetries in the

model which create degeneracy in the Jacobian of the system of equations. However,

what are problems on the surface are actually just chances to learn more and that

is the second purpose of this thesis; to apply well known numerical methods, such

as pseudo-spectral methods and pseudo-arclength continuation, on atypical problems.

We intend to investigate how these difficulties affect these methods and what can be

done to correct these problems.

3

Chapter 2

The hyperbolic PDE model

2.1 Introduction of model and dynamics exhibited

The models introduced in Eftimie et al. [9], describe the evolution of a left-moving

population, u−, and a right-moving population, u+, with attraction (a), repulsion (r),

and alignment (al) interactions. The populations are on a 1-D spatial domain and

described as a continuum, thus u± is the density of those individuals at a point and

some time. Equation 2.1.1 gives us the evolution, initial conditions, and boundary

conditions of these populations,

∂tu
+ + ∂x(γu

+) = −λ+u+ + λ−u−,

∂tu
− − ∂x(γu−) = λ+u+ − λ−u−,

u±(x, 0) = u±0 (x), u±(0, t) = u±(L, t).

(2.1.1)

Equation 2.1.1 is a hyperbolic, nonlocal partial differential equation in 1+1D. The

speed of individuals, γ, may in general depend on space or time but for our purposes it

is assumed constant. The length of the spatial domain, L, is taken large in conjunction

with periodic boundaries to approximate the positive real line. Note the turning rates,

λ±, are functions of total interaction terms, y±(u+, u−), that measure the effects of

attraction, repulsion, and alignment, which gives us nonlinearity in the model.

Figure 2.1 describes how the interaction terms, y±j for j ∈ {a, r, al}, are computed

within the five different models. The kernels in these integrals are Gaussian with the

form

Kj(s) =
1√

2πmj

exp

(
−(s− sj)2

2m2
j

)
, j ∈ {a, r, al},

where mj = 1
8
sj; mj being the width of the interaction kernels and sj being half

the length of the interaction ranges. In general, attraction has the longest range of

4

2.1. Introduction of model and dynamics exhibited

..

Figure 2.1: Form of interaction terms for the five models describing how attraction
(a), repulsion (r), and alignment (al) forces affect individuals. Taken from Eftimie et
al. [9]

5

Chapter 2. The hyperbolic PDE model

..

Figure 2.2: Shape and location of Gaussian kernels in interaction integrals. Notice
repulsion having its largest influences at very close distances while attraction has its
largest influences at longer distances. Taken from Eftimie et al. [11]

interaction and repulsion has the shortest. Figure 2.2 gives an idea of the location and

shape of these kernels.

The total interaction term,

y± = y±r − y±a + y±al,

is then passed through a turning function,

f(y±) =
1

2
+

1

2
tanh

(
y± − y0

)
,

which affects associated turning rates, λ±. Figure 2.3 shows the turning function used

as well as the unshifted turning function. If the total interaction term is large and

positive then the turning function increases the associated turning rate. Conversely

if the total interaction term is large and negative then the turning function decreases

the associated turning rate.

With this turning function, we form the associated turning rates,

λ± = λ1 + λ2f
(
y±
)
,

6

2.1. Introduction of model and dynamics exhibited

..

Figure 2.3: Turning function without and with a shift taking the total interaction
y± as input, which is a sum of the attraction, repulsion, and alignment forces. This
function determines the turning rates of individuals. Taken from Eftimie et al. [11]

which determine how many individuals change direction. λ+ (λ−) is the rate of pre-

viously right- (left-) moving individuals turning to the left (right). Figure 2.4 shows

the directions in which information can be received to affect λ+ in the five models. λ−

functions in a similarly opposite way.

To better understand the turning rates and their effects we write the turning rates

as,

λ± = (λ1 + λ2f(0)) + λ2(f(y±)− f(0)),

then the first term represents a random baseline turning rate and the second term

represents biasing from the attraction, repulsion, and alignment effects. The shift to

the hyperbolic tangent is chosen so the random baseline turning is more accurately

approximated by λ1 and the biasing from interaction influences is more accurately

approximated by λ2.

For our work we focus solely on model M4 and investigate how solutions depend

on the magnitudes of interaction forces, qj for j ∈ {a, r, al}. All other parameters are

fixed as shown in Table 2.1.

7

Chapter 2. The hyperbolic PDE model

..

Figure 2.4: A visualization of how λ+, the rate of originally right-moving individuals
turn to the left, receives information from neighbours behind x− s and in front x+ s
of the reference individual at x in the five models. Taken from Eftimie et al. [9]

8

2.2. The homogeneous steady state and symmetries of the model

Parameter Description Value
sa Half the length of attraction interaction range 1
sr Half the length of repulsion interaction range 1

2

sal Half the length of alignment interaction range 1
4

ma Width of attraction kernel 1
8

mr Width of repulsion kernel 1
16

mal Width of alignment kernel 1
32

λ1 Approximation to baseline random turning rate 0.2
λ2 Approximation to bias turning rate 0.9
y0 Shift of the turning function 2
γ Speed of individuals 0.1
L Length of spatial domain 10

Table 2.1: Description and values of fixed parameters of Equation 2.1.1.

Even in only one spatial direction, Figure 2.5 shows some of the interesting behavior

Equation 2.1.1 can generate.

2.2 The homogeneous steady state and symmetries of the
model

Before we leap into the numerics of evolution and continuation we need to introduce

a few key points. Eftimie et al. [11, 10] establishes the existence and goes through the

linear and weakly nonlinear stability analysis of constant steady states. Because of this,

the dynamics about these states are well studied and we will use small perturbations

from these steady states as initial conditions. We define these steady states as,

(u+, u−) = (A∗ − c, c), A∗ ≥ 0, 0 ≤ c ≤ A∗,

where typically we take A∗ = 2. A∗ in this sense is the population at a point, so we

define the total population on the spatial domain as,

A(t) =

∫ L

0

(
u+(x, t) + u−(x, t)

)
dx.

9

Chapter 2. The hyperbolic PDE model

..

Figure 2.5: Dynamics observed from simulations done by Eftimie et al. Plots show
the total density of populations at points in space and time. Stationary pulses (top
left), traveling pulse (top center), traveling breathers (top right), ripples (bottom left),
zigzag pulses (bottom center), feathers (bottom right). Space is along the x-axis with
time along the y-axis. Taken from Eftimie et al. [9]

10

2.2. The homogeneous steady state and symmetries of the model

Investigating how the total population changes through time we see,

∂tA =

∫ L

0

(
∂tu

+(x, t) + ∂tu
−(x, t)

)
dx,

=

∫ L

0

((
−∂x(γu+)− λ+u+ + λ−u−

)
+
(
∂x(γu

−) + λ+u+ − λ−u−
))
dx,

= γ

∫ L

0

(
∂x(−u+ + u−)

)
dx,

= γ
(
−u+ + u−

)L
0
,

= 0. From boundary conditions

So the total population on the spatial domain does not change with time, thus the ini-

tial condition fixes the total population so it is a conserved quantity of Equation 2.1.1.

Furthermore it is observed from our simulations that if

(u+
0 (x), u−0 (x)) ≥ (0, 0), x ∈ [0, L],

then

(u+(x, t), u−(x, t)) ≥ (0, 0), (x, t) ∈ [0, L]⊗ [0, T̃],

where T̃ is large. However there is no proof of this at this time.

Returning to the homogeneous steady state we defined earlier, although linear

stability analysis was performed for various values of c, we will focus specifically on

the homogeneous steady state, c = 1
2
A∗, for our simulations. Figure 2.6 shows curves

across which steady state or Hopf bifurcations occur in (qa, qr) space with qal = 0.

These bifurcation curves are points in parameter space where the equilibria of the

system change stability, therefore these define boundaries between regions in parameter

space where different dynamics can be observed from the simulations.

For instance, the region to the lower left corner in Figure 2.6 for which every curve

contains the region is the set of parameter values for which the homogeneous steady

state is stable. As a parameter crosses a bifurcation curve the homogeneous steady

state loses stability and the stability is transferred to another state, possibly with more

complex dynamics. An important reason to mention this will be for tests done with the

first variational equation, since we know parameter values where small perturbations

from the homogeneous steady state should decay and the first variational equation

11

Chapter 2. The hyperbolic PDE model

..

Figure 2.6: Hopf and steady state bifurcation curves in (qa, qr) space with qal = 0 for
M4. The homogeneous steady state is stable for parameter values within the lower
left region which is contained by all curves. Taken from Eftimie et al. [4]

12

2.3. Spatial contraction and problem reformulation

describes the evolution of perturbations to the solutions. Furthermore, part of our goal

will be to determine additional bifurcation points of the system using our continuation

software so we may identify regions between potentially more exotic behaviour. For a

detailed review of bifurcation analysis and what can be expected from different types

of bifurcations, see Kuznetsov. [8]

We have one more theoretical property of Equation 2.1.1 we need to keep in mind;

there is a translation and reflection symmetry under which Equation 2.1.1 is invariant.

These are, a translation symmetry, Θy, defined as,

Θyu
±(x, t) = u±(x− y, t),

and a reflection symmetry, κ, defined as,

κ
(
u+(x, t), u−(x, t)

)
=
(
u−(L− x, t), u+(L− x, t)

)
.

These symmetries mean if we have a solution, u(x, t), then Θyu(x, t) or κu(x, t) are

also solutions. The continuous symmetry, Θy, generates a continuous curve of solutions

for any given solution called a ”group orbit of solutions,” except for solutions which

are themselves invariant under Θy. This symmetry has to be taken into consideration

in the continuation of solutions of the system as we will see in Chapter 5, Section 5.2.

2.3 Spatial contraction and problem reformulation

At this point we have the model defined, an understanding of the terms in the model,

a homogeneous steady state to use as the initial condition in our evolutions, and defi-

nitions of population and symmetry within the model. However, linear terms must be

extracted and made obvious from the right-hand side of Equation 2.1.1. Additionally

we wish to rescale the domain [0, L] to be on [0, 2π]; this simplifies the use of pseudo-

spectral methods later. We also wish to reformulate the problem for compactness and

considerations of storage and numerics later. We restate our full model again before

we apply the spatial contraction; our populations evolve according to,

∂tu
± ± γ∂x(u±) = ∓λ+u+ ± λ−u− (2.3.1)

13

Chapter 2. The hyperbolic PDE model

where

λ± = λ1 + λ2f(y±),

y± = y±r − y±a + y±al,

f(y±) =
1

2
+

1

2
tanh(y± − y0),

Ki(s) =
1√

2πmi

exp

(
−(s− si)2

2m2
i

)
,

y±i = qi

∫ ∞
0

Ki(s)(u
∓(x± s)− u±(x∓ s))ds,

(2.3.2)

with conditions

u±(x, 0) = u±0 (x), u±(0, t) = u±(L, t). (2.3.3)

We transform the spatial domain with the following transformations

x =
L

2π
y, w±(y, t) = u±

(
L

2π
y, t

)
, mi =

si
8
,

s =
L

2π
s∗, ds =

L

2π
ds∗, si =

L

2π
s∗i .

With all this Equation 2.3.1 becomes

∂tw
± ± γ∗∂y(w±) = ∓λ+w+ ± λ−w−,

where γ∗ = 2π
L
γ. Equation 2.3.2 becomes

λ± = λ1 + λ2f(y±),

y± = y±r − y±a + y±al,

f(y±) =
1

2
+

1

2
tanh(y± − y0),

K∗i (s∗) =
4

s∗i

√
2

π
exp

(
−32(s∗ − s∗i)2

s∗i
2

)
,

y±i = qi

∫ ∞
0

K∗i (s∗)(w∓(y ± s∗)− w±(y ∓ s∗))ds∗.

Equation 2.3.3 becomes

w±(y, 0) = w±0 (y) , w±(0, t) = w±(2π, t),

where w±0 (y) = u±0
(
L
2π
y
)
. With the spatial contraction done, we return to the original

variable labels to restate our problem in full again as; our populations evolve according

14

2.3. Spatial contraction and problem reformulation

to

∂tu
± ± γ∂xu± = ∓λ+u+ ± λ−u− (2.3.4)

where

λ± = λ1 + λ2f(y±),

y± = y±r − y±a + y±al,

f(y±) =
1

2
+

1

2
tanh(y± − y0),

Ki(s) =
4

si

√
2

π
exp

(
−32(s− si)2

si2

)
,

y±i = qi

∫ ∞
0

Ki(s)(u
∓(x± s)− u±(x∓ s))ds,

with conditions

u±(x, 0) = u±0 (x) , u±(0, t) = u±(2π, t),

and setting

γ → 2π

L
γ, si →

2π

L
si, i ∈ {a, r, al},

for the proper parameter values on the contracted domain. There are a few things we

can simplify from the formulation we have currently. The first is to notice

y±i = qi

∫ ∞
0

Ki(s)
(
u∓(x± s)− u±(x∓ s)

)
ds,

= qi

∫ ∞
0

Ki(s)
(
±u−(x+ s)∓ u+(x− s)

)
ds,

and subsequently notice,

y−i = −y+
i ,

so really we only need to define

yi = qi

∫ ∞
0

Ki(s)
(
u−(x+ s)− u+(x− s)

)
ds

so that

y+
i = yi, y−i = −yi.

15

Chapter 2. The hyperbolic PDE model

Next, it will be easier to compute yi if the integral is extended over the entire real line

so that it is a formal convolution. Eftimie et al. [11] explain that the fixed parameters

si for i ∈ {a, r, al} are chosen in such a way that 98% of the mass of the kernels is

within the positive real line so the error introduced by extending the integrals to the

whole real line should be insignificant and thus we redefine

yi = qi

∫ ∞
−∞

Ki(s)
(
u−(x+ s)− u+(x− s)

)
ds.

Next we notice,

y− = y−r − y−a + y−al = −
(
y+
r − y+

a + y+
al

)
= −y+

so again we need only define

y = yr − ya + yal

thus

y+ = y, y− = −y.

We do one final change to the interaction terms, if we redefine

qa → −qa

then we can form the the total interaction term, y, more generically as

y =
∑

i∈{a,r,al}

yi =
∑

i∈{a,r,al}

qi(Ki ? u
− −Ki ∗ u+),

where f ? g is the cross-correlation,

f ? g =

∫ ∞
−∞

f(s)g(x+ s)ds.

Next we notice

∓∂tu± − γ∂xu± = λ+u+ − λ−u−

is equivalent to Equation 2.3.4 and furthermore if we expand the right-hand side we

see,

λ+u+ − λ−u− = (λ1 + λ2f(y))u+ − (λ1 + λ2f(−y))u−,

= λ1(u+ − u−) + λ2(f(y)u+ − f(−y)u−),

16

2.3. Spatial contraction and problem reformulation

and if we expand again,

f(y)u+ − f(−y)u− =

(
1

2
+

1

2
tanh(y − y0)

)
u+ −

(
1

2
+

1

2
tanh(−y − y0)

)
u−,

=
1

2
(u+ − u−) +

1

2
(u+ tanh(y − y0)− u− tanh(−y − y0)).

Let us mention this is the last time f will refer to the turning function as we have

expanded it out. So our right-hand side becomes

λ+u+ − λ−u− = (λ1 +
1

2
λ2)(u+ − u−) +

1

2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0))

and the linear terms become obvious now. So we restate our full problem one final

time for future reference. Our partial differential equation describing the evolution of

the populations is given by,

∓∂tu± = γ∂xu
±+(λ1+

1

2
λ2)(u+−u−)+

1

2
λ2(u+ tanh(y−y0)−u− tanh(−y−y0)) (2.3.5)

where

y =
∑

i∈{a,r,al}

qi
(
Ki ? u

− −Ki ∗ u+
)
, Ki(s) =

4

si

√
2

π
exp

(
−32(s− si)2

s2
i

)
,

and

u±(x, 0) = u±0 (x), u±(0, t) = u±(2π, t).

To write our differential equation simply as ∂tu = f(u) for later use we define

u = (u+, u−)T ,

Λ = (λ1 +
1

2
λ2),

f(u) = . . . −γ∂xu+ − Λ(u+ − u−)− 1
2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0))

γ∂xu
− + Λ(u+ − u−) + 1

2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0))

 .

(2.3.6)

17

Chapter 3

Pseudo-spectral time-stepping

3.1 Motivation

The next step in our work will be to develop an algorithm to time-step initial conditions

according to Equation 2.3.5 and furthermore to time-step the first variational equation

which we will introduce in Chapter 4, Section 4.4. It should be mentioned that the

first variational equation will require storage and manipulation of roughly twice the

number of variables as Equation 2.3.5 so time stepping this will be more costly.

To get a rough idea of the costs of continuation and evolution of the system to

an equilibrium, we state some observed values on our simulations. For each new

solution point we wish to compute with our continuation we can expect, from current

simulations, around 100 calls to the function which time steps the first variational

equation, each with about 7000 time steps. Furthermore, the initial evolution of

the perturbed homogeneous steady state to an approximately converged equilibrium

can take up to 1000000 time steps for some parameter values as there can be slow

convergence to equilibria. Figure 3.1 highlights this complicating nature of the slow

convergence, where solutions that seem to be converged eventually move to another

state and require lengthy evolution times to do so.

All the values stated are for our currently implemented pseudo-spectral method,

if we were to use finite difference methods in our time stepping we may have needed

a smaller time step size and/or finer spatial resolution, a reasonable assumption as

pseudo-spectral methods are known to achieve good accuracy with a relatively coarse

spatial or temporal resolution.

To get an idea of this difference consider Figure 3.2 which shows a state and three

approximations to the derivative. Although each of the approximations look basically

18

3.1. Motivation

..

Figure 3.1: Comparison of the same initial condition evolved to two different times.
Space is on the x-axis with time on the y-axis. Visualized is the total density of
populations at points in space and time.

identical, if we compute the global error between a finite difference approximation

of the derivative with N = 216 and each of the approximations shown we see the

pseudo-spectral approximation of the derivative has a global error O (10−4) and the

finite difference approximation with the same number of grid points has a global error

O (10−2). To get the same accuracy with finite differencing we need N = 214!

Even if the finite difference methods worked as well with the same time step size

and spatial resolution, they would still run slower than our pseudo-spectral methods.

With the use of the fast Fourier transform, the time taken in solving the discretized

system of Equation 2.3.5 for a single time-step is reduced to a lower order. The

time taken to solve a single time-step of traditional finite differences for this case is

O(N2) but for pseudo-spectral methods with the use of the fast Fourier transform it

is O(N log(N)). The main point to take away from this is that if the pseudo-spectral

methods work, they will significantly reduce the time required to evolve an initial

condition to a converged state and the time required to do the continuation.

So how well can we expect the methods to work? Based on simulations, for pa-

rameter values around the stability region of the homogeneous steady state, we can

expect fairly accurate results from pseudo-spectral methods. The basic idea is that

if h is your spatial grid size and the solution you are converging to is in Cm then

19

Chapter 3. Pseudo-spectral time-stepping

Figure 3.2: A function shown with N = 216 grid points (top left) along with a pseudo-
spectral approximation to the derivative with N = 28 (top right), a finite difference
approximation to the derivative with N = 28 (bottom left), and another finite differ-
ence approximation to the derivative with N = 214. Global errors of pseudo-spectral
approximation and finite difference approximation with N = 214 are O(10−4) while
global error of finite difference approximation with N = 28 is O(10−2).

20

3.2. The Discrete Fourier Transformation and the Coefficients

..

Figure 3.3: Comparison of two solutions evolved with different parameter values, show-
casing the possibility of steep gradients for some solutions. Space is on the x-axis and
plots show the final time density distribution of populations.

you can expect errors between the true solution and your numerical solution to be

O(hm). So the performance of our pseudo-spectral methods is strongly linked to the

expected smoothness of solutions. Figure 3.3 shows us that for some parameter values

our solutions seem to be smooth, but for others we get very steep gradients.

Although the solutions are not discontinuous, we unfortunately do not know the

extent to how smooth, or nonsmooth, solutions may be. These are issues which will

need to be resolved if we wish to continue equilibria beyond the region of stability of

the homogeneous steady state as some simulations do show steep gradients and signs

of error as parameter values leave the region (qa, qr, qal) ∈ [0, 2] ⊗ [0, 2] ⊗ [0, 2]. For

further details on pseudo-spectral methods see Trefethen. [15]

3.2 The Discrete Fourier Transformation and the Coefficients

Pseudo-spectral methods, in our context, requires us to write out the solution, u, as a

sum of space-dependent Fourier basis functions with time-dependent coefficients. We

begin by introducing the discrete Fourier transform (DFT) and the inverse discrete

Fourier transform (IDFT) so that we may apply these methods. As stated, we choose

a Fourier basis thus let,

φk(x) = exp (ikx) .

21

Chapter 3. Pseudo-spectral time-stepping

The choice is natural since our problem has periodic boundary conditions. Recall our

definition of u from Equation 2.3.6. When we use a Fourier basis then the coefficients

of the functions will be denoted as ûk. We choose our spatial discretization as xj =

2π
N
j with j = 0, . . . , N − 1 and therefore we have our function values on the grid as

uj(t) = u(xj, t). Subsequently we have our DFT,

ûk(t) =
1√
N

N−1∑
j=0

uj(t)φ−k(xj), k = −N
2

+ 1, . . . ,
N

2
,

and our IDFT,

uj(t) =
1√
N

N
2∑

k=−N
2

+1

ûk(t)φk(xj), j = 0, . . . , N − 1,

such that they are symmetric since their normalizing constants, 1√
N

are equal. This is

merely preferential but does make some calculations require less book keeping.

When we use the DFT we are transforming from real space to Fourier space. Like-

wise when we use the IDFT we are transforming from Fourier space to real space. Now

what does it mean to be in Fourier space? Fourier space is perhaps more commonly

called the space of frequencies and this comes directly from the basis functions. The

basis function, φk, or coefficient, ûk, is called the basis function, or coefficient, of wave

number k. Exactly, the basis function has k crests and troughs. φ0 is the constant

function 1 while φN
2

is a sawtooth function on the grid, bouncing from a crest at one

grid point to a trough at the next and continuing one.

An increase in the energy of ûk, defined as the magnitude of ûk, causes the ampli-

tude of φk to increase and thus become more dominant. A plot of the energy in every

wave number is then called the power spectrum. Specifically, the power spectrum is

a loglog plot with the wave number k on the x-axis and the energy of its associated

coefficient ûk on the y-axis. Figure 3.4 shows three examples of low, medium, and high

frequency functions u with their power spectrums. For reasons we will go over further

in this section, we plot only positive wave numbers.

Another thing to notice is that since our function will take on real values then we

require conjugate symmetry of the coefficients, ûk = û−k. This is simple to notice,

22

3.2. The Discrete Fourier Transformation and the Coefficients

..

Figure 3.4: Three functions in real space (top) and in their power spectrums (bottom).
Note that k on the x-axis for the power spectrums is associated with ûk−1 in order
to include the 0th wave number on the logarithmic axes. One notices that the more
nonsmooth the functions are the more energy is in their power spectrums.

23

Chapter 3. Pseudo-spectral time-stepping

take any wave number, say k, of the sum of Fourier basis and coefficients, ûkφk(x),

and its opposite wave number, −k. If we split the real and complex components of

their sum we would have

ûkφk(x) + û−kφ−k(x) = (r̂k + iĉk)(cos(kx) + i sin(kx)) + . . .

(r̂−k + iĉ−k)(cos(kx)− i sin(kx)),

= ((r̂k + r̂−k) cos(kx)− (ĉk − ĉ−k) sin(kx)) + . . .

i((r̂k − r̂−k) sin(kx) + (ĉk + ĉ−k) cos(kx))

and if we have real valued u then we need the imaginary part of this sum to be zero.

This then forces

r̂k = r̂−k, ĉk = −ĉ−k,

or simply

ûk = û−k.

Because of this we do not need to store roughly half the coefficients since we can

derive half of them based on the other half. Therefore in practice we store only the

coefficients of the positive wave numbers. Additionally we wish to separate the real

and complex parts of the coefficients and store those by themselves in order to improve

accuracy, eliminating numerical error of the real part computations from entering in

the imaginary part computations and vice-versa. There is two other modifications we

make in practice. Since we have the conjugate symmetry of coefficients then we have

for the zeroth wave number that,

û0 = û−0,

r̂0 + iĉ0 = r̂0 − iĉ0

and therefore ĉ0 = 0 so we need not store it. Finally, since

φN
2

(xj) = exp

(
i
N

2

2π

N
j

)
= (−1)j,

24

3.3. Convergence and advantages of pseudo-spectral methods

which is real valued then,

ûN
2
φN

2
(xj) = (r̂N

2
+ iĉN

2
)(−1)j,

and we require this to be real valued as well so

ĉN
2

= 0.

Therefore in practice we will store the real component of wave numbers 0, . . . , N
2

and

the complex component of wave numbers 1, . . . , N
2
− 1 and if ĉ0 or ĉN

2
is ever referred

to we set it zero.

3.3 Convergence and advantages of pseudo-spectral methods

Now we need to have an idea of when our methods are working well and if the solutions

are well resolved. The first question, whether the programs we create with pseudo-

spectral methods are working properly, is typically answered by finite difference tests

which we will cover in Chapter 4, Section 4.5. For the notion of a well resolved solution

refer to Figure 3.5.

The power spectrum is what mainly tells us if a solution is well resolved. The

power spectrum of a well resolved solution decays at least exponentially after some

wave number and they decay to energies of at least 10−8. In Figure 3.5 the energies of

the well resolved solution decays to levels of numerical precision and it does so at least

exponentially, which is the best possible resolution we can achieve. Conversely, the

poorly resolved solution decays polynomially and only decays to energy levels of about

10−6. What this means theoretically is that something is keeping the pseudo-spectral

methods from achieving the exponential decay and that there are wave numbers beyond

our truncation which have non-negligible energies. Both of these would be issues we

would have to address.

So in all our simulations, if the power spectrum does not decay exponentially or

does not decay to low enough levels, then we should be suspicious of the accuracy

of our results. If we do see these signs then we should try to increase the number

of spatial grid points or look at other potential sources of error, specifically aliasing

25

Chapter 3. Pseudo-spectral time-stepping

..

Figure 3.5: A well resolved solution (top left) and its power spectrum (bottom left)
compared with a poorly resolved solution (top right) and its power spectrum (bottom
right).

26

3.4. Known sources of potential error

errors which will describe in Chapter 3, Section 3.4, Subsection 3.4.1.

As for the advantages of pseudo-spectral methods, we already described how they

can allow for faster computational times when compared with finite difference time

stepping. Another advantage is the ability to transform derivatives into scalar mul-

tiplication, which for Equation 2.3.5, transforms it our PDE to a system of ODEs.

Specifically with our Fourier transform,

(̂ux)k = ikûk.

So if we take our system to Fourier space then we can do away with the spatial

derivative and transform it to a system of ODEs in time with respect to the Fourier

coefficients. Dealing with a system of ODEs in time is simpler than dealing with Equa-

tion 2.3.5 and also because we are using periodic basis functions then we automatically

satisfy the periodic boundary conditions.

The last advantage to these methods for our purposes comes into play with the

computation of the interaction terms. The Convolution Theorem relates convolutions

in real space with scalar multiplication in Fourier space and vice-versa. Specifically

for our interaction terms,

(̂u ∗ v)k = ûkv̂k,

giving us a simple and quick way to compute the convolutions. Instead of approximat-

ing the integrals or using other software to compute the convolutions we can compute

the point-wise multiplication of the Fourier coefficients for u and v and transform back

to real space and we will have our interaction terms.

3.4 Known sources of potential error

3.4.1 Aliasing errors

Aliasing errors arise naturally when using these methods on systems with nonlinearities

and although it is known how to counteract these errors in some cases, it is not known

how to counteract them in all cases. Aliasing errors come from discretizing space into

a grid on which the basis functions which are N wave numbers apart are identical on

the grid,

φk(xj) = φk+N(xj), j = 0, . . . , N − 1.

27

Chapter 3. Pseudo-spectral time-stepping

..

Figure 3.6: Two Fourier basis functions which are equal on every grid point. Taken
from Trefethen. [15]

Figure 3.6 shows an example of two basis functions which are equal on every grid

point.

To understand how aliasing errors better we will consider a simple, well-understood

example. Consider the quadratic nonlinearity,

w = u2,

and recall the Convolution Theorem from earlier. Assume u is given as shown in

Figure 3.7, then formally we have that since u2 is point-wise multiplication in real

space, then the Fourier coefficients of w should be given by the convolution of the

Fourier coefficients of u. Figure 3.8 shows w in real space and in Fourier space from

this formal understanding. Notice we need twice the number of grid points to formally

represent w, although it is only noticeable in the power spectrum.

Notice that w in Fourier space has energy in twice the wave numbers as wave

numbers which had energy in the Fourier space representation of u. This is precisely

where aliasing errors come from. In practice we would form u in real space, compute

the point-wise multiplication,

wj = ujuj, j = 0, . . . , N − 1,

then take w to Fourier space. This would be using the truncation on our basis func-

tions, φk, we had for u. Thus the energy from the formal definition of ŵk in wave

numbers [−N,−N
2

] alias to wave numbers [0, N
2

] and similarly, energy in wave num-

28

3.4. Known sources of potential error

..

Figure 3.7: Real space representation of u (top) along with power spectrum (bottom).

..

Figure 3.8: Real space representation of w = u2 (top) along with power spectrum
(bottom). Notice the quadratic nonlinearity needs twice the grid points to be properly
resolved when compared to Figure 3.7.

29

Chapter 3. Pseudo-spectral time-stepping

bers (N
2
, N] alias to wave numbers (−N

2
, 0].

So how can we first of all notice these errors coming about and secondly, how can

we mitigate this error? The most prominent sign of aliasing errors comes from the

power spectrum. As we mentioned earlier, we want a well resolved solution whose

power spectrum decays exponentially. Aliasing errors will cause energy from the wave

numbers past our truncation to move into the wave numbers of our truncation and is

therefore error that should not be there.

Although if a nonlinearity exists in the equations then aliasing errors will always

occur if we apply pseudo-spectral methods naively, in less severe cases it may not be

noticeable at all. In more severe cases, however, the thing one notices most is that

the power spectrum will not decay exponentially. This is the primary sign of aliasing

errors, but one should expect them to exist in any case where pseudo-spectral methods

are applied to nonlinearities without concern to these errors.

So now we have a grasp on what they are and how to notice them, how do we

mitigate them? The idea is fairly simple and there are two variations that accomplish

the same goal. The basic idea is to have zeros in all wave numbers that would cause

aliasing errors. If we set zero all coefficients for wave numbers k > N
4

then our

quadratic nonlinearity would formally have energy in wave numbers up to twice this

cut off, namely 2N
4

= N
2

, which is the truncation we have on u originally. So formally

we would indeed have that no energy would be in wave numbers outside our truncation

and so no aliasing errors.

One thing we must watch for when we do this zeroing out of coefficients is whether

we are removing significant wave numbers. If we zero out coefficients with significant

energy, anything higher than 10−8, then we could be introducing non-negligible error.

If we are dealing with well resolved solutions then this perhaps will not be a problem,

but if we do notice we would zero out significant wave numbers then we could merely

increase the spatial resolution until this problem can be avoided.

We have discussed how to remove aliasing error from quadratic nonlinearities, and

indeed the basic process works with any polynomial nonlinearity. Essentially for any

polynomial nonlinearity, up, with p ∈ Z the energy diffuses to wave numbers up to p

30

3.4. Known sources of potential error

Figure 3.9: Power spectrum of solution (left) along with the final time plot of density
distributions (right) for a simulation is showing signs of aliasing errors as can be seen
by the polynomial decay of the power spectrum. A Gibb’s phenomenon type error is
also showing signs as ripples are evident on density distributions.

times the maximum wave number with energy of u. So if our truncation is up to N
2

then we could zero out coefficients past wave number N
2p

in a similar fashion to what

we described and remove the aliasing error. We should mention that one can zero

out less than this and still have the de-aliasing scheme work but refer the reader to

Trefethen. [15]

This only works this well for polynomial nonlinearities, however. In our model we

have a hyperbolic tangent term that might cause problems because of aliasing errors.

If we expand it out as its Taylor series then that would perhaps imply that the energy

diffuses up to any wave number. Figure 3.9 shows us a solution and its power spectrum

from simulations where aliasing errors may be significantly affecting the simulation.

Although the power spectrum does decay to numerical precision, it does not do so

exponentially which is a sign of aliasing errors as we discussed.

3.4.2 Gibb’s phenomenon

The Gibb’s phenomenon is another potential source of error for our model and has to

do with the steepness of gradients along with the spatial discretization. Theoretically

the Gibb’s phenomenon occurs when you try to write a discontinuous function as a sum

of Fourier basis functions. No matter the truncation you choose on the basis functions,

31

Chapter 3. Pseudo-spectral time-stepping

..

Figure 3.10: Fourier approximations truncated to the nth wave number com-
pared with the true discontinuity. Notice the ripples retain a finite am-
plitude but become more localized to the discontinuity. Taken from
http://www.charlesgao.com/en/?p=136 July 3rd, 2013.

ripples centered on the discontinuity will appear. As you increase the truncation on

your Fourier approximation one notices that the ripples become more localized to the

discontinuity but will maintain a finite amplitude regardless of how high of a truncation

you take. Figure 3.10 shows this quite clearly for various truncations on the Fourier

basis. Notice the ripples persist no matter how high a truncation we take.

The Gibb’s phenomenon can occur even if it is not a true discontinuity. If the

solution has a steep gradient and/or our spatial grid is coarse enough then the steep

gradient might look like a discontinuity on the grid. If this happens then we could get

the same kind of ripples occurring centered on the steep gradient. Figure 3.3 already

showcased a solution with a particularly steep gradient and as mentioned we do not

know the extent to how nonsmooth solutions may be.

Again the hyperbolic tangent term could be a cause of this error. If the total

interaction term, y, has large amplitude components then once it is passed through

the hyperbolic tangent the result may appear to be almost like a square wave as

32

3.4. Known sources of potential error

..

Figure 3.11: Comparison between a total interaction term, y, from simulations (left),
and the same term passed through the shifted hyperbolic tangent, tanh(y−y0) (right).
The steep gradients of tanh(y − y0) could cause Gibb’s phenomenon type errors.

Figure 3.11 depicts.

If our grid does not resolve these steep gradients arising from the hyperbolic tangent

then we may indeed see Gibb’s phenomenon affecting simulations. In fact we do see

simulations where this may be happening as highlighted in Figure 3.9. The drastic

ripples on the solution is a tell-a-tale sign of Gibb’s phenomenon, although it is not

absolute proof.

33

Chapter 4

Time stepping the system and the first vari-
ational equation

4.1 Applying the Fourier transform to the PDE

So now we need to apply the Fourier transform to Equation 2.3.5 to get a system of

ODEs in time with respect to the Fourier coefficients. We will let,

NLT = u+ tanh(y − y0)− u− tanh(−y − y0),

so we may write Equation 2.3.5 as

∓∂tu± = γ∂xu
± + Λ(u+ − u−) +

1

2
λ2NLT.

Now apply our spatial grid with the function values of u± and NLT on the grid to get

∓∂tu±j = γ∂xu
±
j + Λ(u+

j − u−j) +
1

2
λ2NLTj, j = 0, . . . , N − 1. (4.1.1)

Now we apply our IDFT so we get

u±j =
1√
N

N
2∑

k=−N
2

+1

û±k φk(xj), ∂tu
±
j =

1√
N

N
2∑

k=−N
2

+1

∂tû
±
k φk(xj),

∂xu
±
j =

1√
N

N
2∑

k=−N
2

+1

(ikû±k)φk(xj), NLTj =
1√
N

N
2∑

k=−N
2

+1

N̂LT kφk(xj),

and we get Equation 4.1.1 transformed as

N
2∑

k=−N
2

+1

(
∓∂tû±k − ikγû

±
k − Λ(û+

k − û
−
k)− 1

2
λ2N̂LT k

)
φk(xj) = 0, (4.1.2)

for j = 0, . . . , N − 1. We then introduce the inner product,

〈u, v〉 =
N−1∑
j=0

uj v̄j, u, v ∈ CN .

34

4.1. Applying the Fourier transform to the PDE

Note that φk(xj) and φq(xj) are orthogonal if k 6= q and so 〈φk(xj), φq(xj)〉 = Nδk,q. At

this point we take the condition that the left-hand side of Equation 4.1.2 be orthogonal

to the Fourier basis functions,

〈φq,LHS〉 = 0, q = −N
2

+ 1, . . . ,
N

2
,

and get

N−1∑
j=0

N
2∑

k=−N
2

+1

(
∓∂tû±k − ikγû

±
k − Λ(û+

k − û
−
k)− 1

2
λ2N̂LT k

)
φq(xj)φk(xj)

−1 = 0,

N
2∑

k=−N
2

+1

(
∓∂tû±k − ikγû

±
k − Λ(û+

k − û
−
k)− 1

2
λ2N̂LT k

)N−1∑
j=0

(φq(xj)φk(xj)
−1) = 0,

N
2∑

k=−N
2

+1

(
∓∂tû±k − ikγû

±
k − Λ(û+

k − û
−
k)− 1

2
λ2N̂LT k

)
〈φq(xj), φk(xj)〉 = 0,

N
2∑

k=−N
2

+1

(
∓∂tû±k − ikγû

±
k − Λ(û+

k − û
−
k)− 1

2
λ2N̂LT k

)
Nδq,k = 0,

(
∓∂tû±q − iqγû±q − Λ(û+

q − û−q)− 1

2
λ2N̂LT q

)
= 0,

for q = −N
2

+1, . . . , N
2

. At this point we will return to our k notation for the equations.

Continuing along we get a system of ODEs as

∓∂tû±k = ikγû±k + Λ(û+
k − û

−
k) +

1

2
λ2N̂LT k, k = −N

2
+ 1, . . . ,

N

2
. (4.1.3)

As we mentioned in Chapter 3, Section 3.2, the strictly negative wave numbers are

redundant to keep track of so we can reduce this system by focusing just on k =

0, . . . , N
2
. Next we want to split the real and complex components of all terms. Thus

we let

û±k = r̂±k + iĉ±k , N̂LT k = r̂NLT k + iĉNLT k,

so Equation 4.1.3 becomes

∓∂t
(
r̂±k + iĉ±k

)
=ikγ

(
r̂±k + iĉ±k

)
+ Λ

((
r̂+
k + iĉ+

k

)
−
(
r̂−k + iĉ−k

))
+ . . .

1

2
λ2

(
r̂NLT k + iĉNLT k

)
, k = 0, . . . ,

N

2
.

35

Chapter 4. Time stepping the system and the first variational equation

So splitting the real and complex components of this equation we get

Real: ∓∂tr̂±k = −kγĉ±k + Λ(r̂+
k − r̂

−
k) +

1

2
λ2r̂NLT k, k = 0, . . . ,

N

2
,

Imag: ∓∂tĉ±k = kγr̂±k + Λ(ĉ+
k − ĉ

−
k) +

1

2
λ2ĉNLT k, k = 1, . . . ,

N

2
− 1,

(4.1.4)

noting that we are using the fact that we know ĉ±0 = 0 and ĉ±N
2

= 0 from Chapter 3,

Section 3.2. Now we write Equation 4.1.4 as the full 4 ODEs grouping together terms.

Thus we get,

−∂tr̂+
k = Λr̂+

k − kγĉ
+
k − Λr̂−k +

1

2
λ2r̂NLT k, k = 0, . . . ,

N

2
,

−∂tĉ+
k = kγr̂+

k + Λĉ+
k − Λĉ−k +

1

2
λ2ĉNLT k, k = 1, . . . ,

N

2
− 1,

∂tr̂
−
k = Λr̂+

k − Λr̂−k − kγĉ
−
k +

1

2
λ2r̂NLT k, k = 0, . . . ,

N

2
,

∂tĉ
−
k = Λĉ+

k + kγr̂−k − Λĉ−k +
1

2
λ2ĉNLT k, k = 1, . . . ,

N

2
− 1.

(4.1.5)

Now let

U =
(
(r̂+)T , (ĉ+)T , (r̂−)T , (ĉ−)T

)T
where

r̂± =
(
r̂±0 , . . . , r̂

±
N
2

)T
, ĉ± =

(
ĉ±1 , . . . , ĉ

±
N
2
−1

)T
.

Then let

Ω =


−IN

2
+1 0 0 0

0 −IN
2
−1 0 0

0 0 IN
2

+1 0

0 0 0 IN
2
−1

 ,

let K be a N
2

+ 1 by N
2
− 1 matrix such that Kk+1,k = kγ for k = 1, . . . , N

2
− 1 and

Kq,k = 0 otherwise. Finally let,

Q =


ΛIN

2
+1 −K −ΛIN

2
+1 0

KT ΛIN
2
−1 0 −ΛIN

2
−1

ΛIN
2

+1 0 −ΛIN
2

+1 −K

0 ΛIN
2
−1 KT −ΛIN

2
−1

 ,

so we may write the entire system of ODEs for our Fourier coefficients as,

Ω∂tU = QU +NLTv (4.1.6)

36

4.2. Computation of nonlinear terms

where

NLTv =
1

2
λ2

(
r̂NLT

T
, ĉNLT

T
, r̂NLT

T
, ĉNLT

T)T
and

r̂NLT =
(
r̂NLT 0, . . . , r̂NLT N

2

)T
, ĉNLT =

(
ĉNLT 1, . . . , ĉNLT N

2
−1

)T
.

4.2 Computation of nonlinear terms

Now we have a formulation for the entire system of ODEs in time with respect to

the Fourier coefficients. To make it complete though we need a way to compute the

nonlinear terms and transfer to Fourier space. Thus we restate our nonlinear terms,

NLT = u+ tanh(y − y0)− u− tanh(−y − y0), y =
∑

i={a,r,al}

qi
(
Ki ? u

− −Ki ∗ u+
)
.

We will begin with the most internal terms, namely Ki ? u
− and Ki ∗ u+. For the first

we have

Ki ? u
− =

∫ ∞
−∞

Ki(s)u
−(x+ s)ds. (4.2.1)

In order to apply the Convolution Theorem we need to change this cross-correlation

into a proper convolution. Thus let us do a change of variables such that,

s = −r, ds = −dr,

and call

Qi(r) = Ki(−r)

so we may write the Equation 4.2.1 as

−
∫ −∞
∞

Qi(r)u
−(x− r)dr

and then switch the bounds of integration so we write Equation 4.2.1 as a convolution,∫ ∞
−∞

Qi(r)u
−(x− r)dr = Qi ∗ u−.

Now we use the Convolution Theorem and thus know,

Q̂i ∗ u−k = (̂Qi)kû
−
k ,

K̂i ∗ u+
k = (̂Ki)kû

+
k ,

37

Chapter 4. Time stepping the system and the first variational equation

and we have the Fourier transform of Qi and Ki can be found formally as,

(̂Qi)k = exp

(
− 1

128
k2s2

i + iksi

)
,

(̂Ki)k = exp

(
− 1

128
k2s2

i − iksi
)
.

Therefore we have

(̂Qi)kû
−
k = exp

(
− 1

128
k2s2

i

)
(cos(ksi) + i sin(ksi))

(
r̂−k + iĉ−k

)
,

= exp

(
− 1

128
k2s2

i

)(
(cos(ksi)r̂

−
k − sin(ksi)ĉ

−
k) + i(cos(ksi)ĉ

−
k + sin(ksi)r̂

−
k)
)

and

(̂Ki)kû
+
k = exp

(
− 1

128
k2s2

i

)
(cos(ksi)− i sin(ksi))

(
r̂+
k + iĉ+

k

)
,

= exp

(
− 1

128
k2s2

i

)(
(cos(ksi)r̂

+
k + sin(ksi)ĉ

+
k) + i(cos(ksi)ĉ

+
k − sin(ksi)r̂

+
k)
)
.

Putting these together we have

ŷik =qi(exp

(
− 1

128
k2s2

i

)(
(cos(ksi)r̂

−
k − sin(ksi)ĉ

−
k) + i(cos(ksi)ĉ

−
k + sin(ksi)r̂

−
k)
)
− . . .

exp

(
− 1

128
k2s2

i

)(
(cos(ksi)r̂

+
k + sin(ksi)ĉ

+
k) + i(cos(ksi)ĉ

+
k − sin(ksi)r̂

+
k)
)
).

=qi exp

(
− 1

128
k2s2

i

)
(
(
cos(ksi)(r̂

−
k − r̂

+
k)− sin(ksi)(ĉ

+
k + ĉ−k)

)
+ . . .

i
(
cos(ksi)(ĉ

−
k − ĉ

+
k) + sin(ksi)(r̂

−
k + r̂+

k)
)
).

Furthermore if we let

Ck,i = qi exp

(
− 1

128
k2s2

i

)
cos(ksi), Sk,i = qi exp

(
− 1

128
k2s2

i

)
sin(ksi),

then write

Ck =
∑

i={a,r,al}

Ck,i, Sk =
∑

i={a,r,al}

Sk,i.

With these we can write our total interaction term succinctly in Fourier space with

real and complex splitting as

<(ŷk) = Ck(r̂
−
k − r̂

+
k)− Sk(ĉ+

k + ĉ−k),

=(ŷk) = Ck(ĉ
−
k − ĉ

+
k) + Sk(r̂

−
k + r̂+

k).

38

4.3. Temporal discretization and initial condition of time-stepping

And once we have these terms in Fourier space then we take ŷ into real space with our

IDFT to get y. We can already take û± into real space and therefore we can compute

NLT = u+ tanh(y − y0)− u− tanh(−y − y0).

If we were attempting to de-alias this nonlinearity we would pad û± and ŷ with zeros

before taking them to real space to compute NLT . However we have not attempted

to de-alias this nonlinearity as it is not well known how exactly tanh causes aliasing

errors. After we have NLT we take it to Fourier space with our DFT and then we

have our nonlinear terms in Fourier space. Then our application of pseudo-spectral

methods to the PDE is complete and we are ready to discretize temporally and start

time-stepping.

4.3 Temporal discretization and initial condition of time-stepping

At this point we need to time-step Equation 4.1.6. To begin, we form our temporal

grid as

tm = ∆m, m = 0, . . . ,M,

such that we wish to evolve an initial condition to time ∆M . Next we need to choose

our function values on our temporal grid. For the nonlinear terms we will let,

U(tm) ≈ Um,

and thus,

NLTv(U(tm)) ≈ NLTv(Um) = NLTvm,

so we have an explicit scheme for the nonlinear terms when attempting to time-step

to tm+1 from tm. For the linear terms we will let

U(tm) ≈ Um + Um+1

2
, ∂tU(tm) ≈ Um+1 − Um

∆
,

such that we use a trapezoidal method for the U term and a forward Euler method

for the ∂tU term. Thus we have a semi-implicit scheme for the linear terms and

an explicit scheme for the nonlinear terms. This choice was originally motivated by

the transport equation portion of the equations, knowing that a trapezoidal method

preserves amplitudes when time-stepping simply the transport equation. One can refer

39

Chapter 4. Time stepping the system and the first variational equation

to Ascher and Petzold for a more in-depth discussion of stability and convergence of

the trapezoidal method. [1].

However at the time I believed this was the only linear portion of Equation 2.3.5,

which is not true. Simulations do show that this choice of discretization is working

decently well as we will show in Chapter 4, Section 4.5 with comparison to computed

solutions from simulations done by Eftimie et al., as well as finite difference tests.

Though perhaps there is a more suitable discretization scheme.

With this discretization choice Equation 4.1.6 separates into a system to solve for

Um+1 as,

Ω

(
Um+1 − Um

∆

)
= Q

(
Um+1 + Um

2

)
+

1

2
λ2NLTvm,

2Ω(Um+1 − Um) = ∆Q(Um+1 + Um) + ∆λ2NLTvm,

(2Ω−∆Q)Um+1 = (2Ω + ∆Q)Um + ∆λ2NLTvm.

Thus if we wish to time-step a solution Um to the next time-step Um+1 we must solve

the system

(2Ω−∆Q)Um+1 = (2Ω + ∆Q)Um + ∆λ2NLTvm. (4.3.1)

In practice we take our known solution, be it an initial condition or an already time-

stepped solution, compute the nonlinear terms as outlined in the previous section, and

then solve Equation 4.3.1 for the solution at the next time-step.

Next we address what will be our initial condition in practice. We mentioned in

Section 2 that we will use the homogeneous steady state with A∗ = 2. Namely we will

use small perturbations from

(u+, u−) = (1, 1).

We will take these perturbations in the same way as done by Eftimie et al. [9], which

is to take 0.01 amplitude random noise and add it to the homogeneous steady state.

If we call XN the space of N by 1 vectors whose entries are randomly chosen between

−0.01 and 0.01 then our initial conditions for simulations will be precisely,

(u+
0 , u

−
0)T = (11,N , 11,N)T + (vT , zT)T , v, z ∈ XN .

40

4.4. The first variational equation

Figure 4.1: Unfiltered random noise (left) compared with filtered random noise (right).

Filter is exp
(
−k 2

3

)
with post-processing in order to retain amplitude and mean.

So we will set this initial condition initially, transform it to Fourier space, and use this

result as U0. From there we can time-step the equations. We note that in practice

we smooth out the random noise with a filter, exp
(
−k 2

3

)
, with post-processing so

that the filtered noise retains the same amplitude and mean. This is important for

initial conditions as the unfiltered noise would have a poorly resolved power spectrum.

Figure 4.1 displays the unfiltered random noise and the filtered random noise.

4.4 The first variational equation

4.4.1 Explanation and derivation

Now we have a way to evolve a given state of right- and left-moving populations

according to Equation 2.3.5. However, in order to use the continuation methods we

will introduce in Section 5 we will need a way to evolve a given state, (u+, u−), as

well as perturbations with respect to the state, call these (w+, w−). We will also need

to evolve parameters, qi, and perturbations to these parameters, say dqi, although

the equations describing their evolution will be trivial as we will show. The first

variational equation is precisely the system to evolve all the information we will need

for the continuation method.

41

Chapter 4. Time stepping the system and the first variational equation

We start by restating our PDE as

∂tu = f(u, q`)

where we recall the definitions of u and f from Equation 2.3.6. We note that although

f does depend on each qi for i ∈ {a, r, al}, in practice we only vary one of these

parameters in the continuation method so we need only denote how f depends on the

parameter we vary which we will call q`. We also add an equation for the evolution of

the parameter which is,

∂tq` = 0,

so now the system

∂tu = f(u, q`),

∂tq` = 0,
(4.4.1)

describes the evolution of our state and parameter. Next we need a system to describe

the evolution of the perturbations to the state and parameter. For ε > 0, we add some

perturbation w = (w+, w−)T and dq` to our state and parameter such that ||w||L2 = 1

and dq` = 1. We note that if ` = a then we set

dq` → −dq`

since we did the same to qa in Chapter 2, Section 2.3 and will aid us in simplifying

terms later. Therefore we set

u→ u+ εw, q` → q` + εdq`

and then use a Taylor expansion of f about the state and parameter to transform

Equation 4.4.1 into

∂tu+ ε∂tw = f(u, q`) + εDf(u, q`)(w, dq`)
T ,

∂tq` + ε∂tdq` = 0,

but some of the terms of this system are redundant as we will be evolving the state

and parameter according to Equation 4.4.1 simultaneously so in fact we can cancel

42

4.4. The first variational equation

terms and drop the ε to get

∂tw = Df(u, q`)(w, dq`)
T ,

∂tdq` = 0.
(4.4.2)

Equation 4.4.2 is our first variational system describing the evolution of the perturba-

tions. Now we need to compute Df and its action on (w, dq`)
T . In order to accomplish

this, we distinguish the components of f as

f(u, q`) =

 f (1)(u, q`)

f (2)(u, q`)


such that

f (1)(u, q`) = −γ∂xu+ − Λ(u+ − u−)− 1

2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0))

and

f (2)(u, q`) = γ∂xu
− + Λ(u+ − u−) +

1

2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0)).

Therefore we have

Df(u, q`) =

 f
(1)

u+ f
(1)

u− f
(1)
q`

f
(2)

u+ f
(2)

u− f
(2)
q`

 . (4.4.3)

We proceed with the derivations of the partial derivatives we need. For f (1) we get,

f
(1)

u+ = −γ∂x(·)− Λ− 1

2
λ2∂u+(u+ tanh(y − y0)− u− tanh(−y − y0)),

f
(1)

u− = Λ− 1

2
λ2∂u−(u+ tanh(y − y0)− u− tanh(−y − y0)),

f (1)
q`

= −1

2
λ2∂q`(u

+ tanh(y − y0)− u− tanh(−y − y0)).

Furthermore we have

∂u+(u+ tanh(y − y0)− u− tanh(−y − y0)) = tanh(y − y0) + (u+sech2(y − y0) + . . .

u−sech2(−y − y0))∂u+y,

∂u−(u+ tanh(y − y0)− u− tanh(−y − y0)) = − tanh(−y − y0) + (u+sech2(y − y0) + . . .

u−sech2(−y − y0))∂u−y,

∂q`(u
+ tanh(y − y0)− u− tanh(−y − y0)) = (u+sech2(y − y0) + u−sech2(−y − y0))∂q`y.

43

Chapter 4. Time stepping the system and the first variational equation

And finally we have

∂u+y = ∂u+
∑

i={a,r,al}

qi(Ki ? u
− −Ki ∗ u+),

= −
∑

i={a,r,al}

qiKi ∗ (·).

∂u−y = ∂u−
∑

i={a,r,al}

qi(Ki ? u
− −Ki ∗ u+),

=
∑

i={a,r,al}

qiKi ? (·).

∂q`y = ∂q`
∑

i={a,r,al}

qi(Ki ? u
− −Ki ∗ u+),

= (K` ? u
− −K` ∗ u+).

For brevity we will neglect to write the full partial derivatives and combine them in

pieces later. We still need the partials of f (2), but if we were to go about the same

process as above we see,

f
(2)

u+ = Λ +
1

2
λ2∂u+(u+ tanh(y − y0)− u− tanh(−y − y0)),

f
(2)

u− = γ∂x(·)− Λ +
1

2
λ2∂u−(u+ tanh(y − y0)− u− tanh(−y − y0)),

f (2)
q`

=
1

2
λ2∂q`(u

+ tanh(y − y0)− u− tanh(−y − y0)).

So in fact these partials differ very slightly from those of f (1) and as such we have

already derived the partials of the nonlinear terms of f (2). Now we wish to write out

44

4.4. The first variational equation

Df(u, q`)(w, dq`)
T explicitly so we go through each term interaction now.

f
(1)

u+w
+ =− γ∂xw+ − Λw+ − 1

2
λ2w

+ tanh(y − y0)− 1

2
λ2(u+sech2(y − y0) + . . .

u−sech2(−y − y0))

− ∑
i={a,r,al}

qiKi ∗ w+

 ,

f
(1)

u−w
− =Λw− +

1

2
λ2w

− tanh(−y − y0)− 1

2
λ2(u+sech2(y − y0) + . . .

u−sech2(−y − y0))

 ∑
i={a,r,al}

qiKi ? w
−

 ,

f (1)
q`
dq` =− 1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0))

(
dq`(K` ? u

− −K` ∗ u+)
)
),

f
(2)

u+w
+ =Λw+ +

1

2
λ2w

+ tanh(y − y0) +
1

2
λ2(u+sech2(y − y0) + . . .

u−sech2(−y − y0))

− ∑
i={a,r,al}

qiKi ∗ w+

 ,

f
(2)

u−w
− =γ∂xw

− − Λw− − 1

2
λ2w

− tanh(−y − y0) +
1

2
λ2(u+sech2(y − y0) + . . .

u−sech2(−y − y0))

 ∑
i={a,r,al}

qiKi ? w
−

 ,

f (2)
q`
dq` =

1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0))

(
dq`(K` ? u

− −K` ∗ u+)
)
).

45

Chapter 4. Time stepping the system and the first variational equation

Then we have

f (1)
u+w

+ + f
(1)

u−w
− + f (1)

q`
dq` = . . .

− γ∂xw+ − Λ(w+ − w−)− 1

2
λ2(w+ tanh(y − y0)− w− tanh(−y − y0))− . . .

1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0)) . . .dq`(K` ? u

− −K` ∗ u+) +
∑

i={a,r,al}

qi(Ki ? w
− −Ki ∗ w+)


f (2)

u+w
+ + f

(2)

u−w
− + f (2)

q`
dq` = . . .

γ∂xw
− + Λ(w+ − w−) +

1

2
λ2(w+ tanh(y − y0)− w− tanh(−y − y0)) + . . .

1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0)) . . .dq`(K` ? u

− −K` ∗ u+) +
∑

i={a,r,al}

qi(Ki ? w
− −Ki ∗ w+)

 .

From here we write out the first variational system out as,

∓∂tw± = γ∂xw
± + Λ(w+ − w−) +

1

2
λ2(w+ tanh(y − y0)− w− tanh(−y − y0)) + . . .

1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0))

(
dq`(K` ? u

− −K` ∗ u+) + yw
)
,

∂tdq` = 0,

(4.4.4)

where

yw =
∑

i={a,r,al}

qi(Ki ? w
− −Ki ∗ w+).

The last thing we note is that since the first variational equation is dependent on the

current state and parameter, we have to time step Equation 2.3.5 simultaneously with

Equation 4.4.4, therefore we state the full system to time-step,

∓∂tu± = γ∂xu
± + Λ(u+ − u−) +

1

2
λ2(u+ tanh(y − y0)− u− tanh(−y − y0)),

∂tq` = 0,

∓∂tw± = γ∂xw
± + Λ(w+ − w−) +

1

2
λ2(w+ tanh(y − y0)− w− tanh(−y − y0)) + . . .

1

2
λ2(u+sech2(y − y0) + u−sech2(−y − y0))

(
dq`(K` ? u

− −K` ∗ u+) + yw
)
,

∂tdq` = 0.

(4.4.5)

46

4.4. The first variational equation

4.4.2 Time-stepping the first variational equation

Now we have to discretize temporally and time-step Equation 4.4.5. However, this is

simpler now that we have done the work to get Equation 4.1.6. If we let

NLT (2) = (w+ tanh(y − y0)− w− tanh(−y − y0)) + . . .

(u+sech2(y − y0) + u−sech2(−y − y0))
(
dq`(K` ? u

− −K` ∗ u+) + yw
)
,

then we can write Equation 4.4.5 as

∓∂tu± = γ∂xu
± + Λ(u+ − u−) +

1

2
λ2NLT,

∂tq` = 0,

∓∂tw± = γ∂xw
± + Λ(w+ − w−) +

1

2
λ2NLT

(2),

∂tdq` = 0.

(4.4.6)

and it is at this point it becomes apparent that since the linear terms have the same

form then the application of the Fourier transform and the temporal discretization

will result in the same system to solve, only different in the nonlinear terms. We then

denote

ŵ±k = r̂w
±
k + iĉw

±
k

and

N̂LT (2)
k = ̂rNLT (2)

k + i ̂cNLT (2)
k, k = 0, . . . ,

N

2
.

Then define

Ω∗ =


Ω 0 0 0

0 1
2

0 0

0 0 Ω 0

0 0 0 1
2

 , Q∗ =


Q 0 0 0

0 0 0 0

0 0 Q 0

0 0 0 0

 ,

NLTv∗ =

(
r̂NLT

T
, ĉNLT

T
, r̂NLT

T
, ĉNLT

T
, 0, . . .

(
r̂NLT

(2)
)T

,

(
ĉNLT

(2)
)T

,

(
r̂NLT

(2)
)T

,

(
ĉNLT

(2)
)T

, 0

)T

,

47

Chapter 4. Time stepping the system and the first variational equation

where

r̂NLT
(2)

=

(
r̂NLT

(2)

0 , . . . , r̂NLT
(2)
N
2

)T
, ĉNLT

(2)
=

(
ĉNLT

(2)

1 , . . . , ĉNLT
(2)
N
2
−1

)T
.

Now let

U∗ =
(
(r̂+)T , (ĉ+)T , (r̂−)T , (ĉ−)T , q`, (r̂w

+)T , (ĉw
+)T , (r̂w

+)T , (ĉw
+)T , dq`

)T
and then we can go from a currently known state U∗(tm) = U∗m to the next time-step

U∗(tm+1) = U∗m+1 by solving the system of equations,

(2Ω∗ −∆Q∗)U∗m+1 = (2Ω∗ + ∆Q∗)U∗m + ∆λ2NLTv
∗. (4.4.7)

The last thing we need to be able to time-step Equation 4.4.5 is have a way to compute

N̂LT
(2)

. However this also comes almost entirely from the work earlier to compute

N̂LT . We restate,

NLT (2) = (w+ tanh(y − y0)− w− tanh(−y − y0)) + . . .

(u+sech2(y − y0) + u−sech2(−y − y0))
(
dq`(K` ? u

− −K` ∗ u+) + yw
)
,

and then let

y` = K` ? u
− −K` ∗ u+.

We know how to compute y and with only slight variations we state the algorithms to

compute ŷw and ŷ` as,

<(ŷw) = Ck(r̂w
−
k − r̂w

+
k)− Sk(ĉw+

k + ĉw
−
k),

=(ŷw) = Ck(ĉw
−
k − ĉw

+
k) + Sk(r̂w

−
k + r̂w

+
k),

<(ŷ`) =
1

q`
Ck,`(r̂w

−
k − r̂w

+
k)− 1

q`
Sk,`(ĉw

+
k + ĉw

−
k),

=(ŷ`) =
1

q`
Ck,`(ĉ

−
k − ĉ

+
k) +

1

q`
Sk,`(r̂

−
k + r̂+

k).

Once we have ŷw and ŷ` we take them to real space and get yw and y`. We would then

take û± and ŵ± to real space and get u± and w±. Again we would pad the Fourier

space representations of these variables with zeroes before taking them to real space

if we were attempting to de-alias the nonlinearity. Then we can compute NLT (2) in

real space and take it back to Fourier space with our DFT and get N̂LT
(2)

.

48

4.5. Validation tests of time-steppers

Figure 4.2: Several points around a Hopf-steady state bifurcation curve crossing (top
left) along with dynamics observed. Plots show the total density at a point in space
and time. Taken from Eftimie et al. [4]

4.5 Validation tests of time-steppers

The simplest tests we can do to check if our time-steppers are performing correctly is

to choose parameter values , qi for i ∈ {a, r, al}, which we know what the solutions

should look like. Figure 4.2 shows several points in (qa, qr)-space with qal = 0 around

the crossing of Hopf and steady state bifurcation curves along with solutions observed

from simulations from Eftimie et al. at some of the points.

We run simulations to the same final times as those in Figure 4.2 with approximated

parameter values based on the figure. Figure 4.3 shows the results of our simulations.

The slight difference observed in the simulation of point 4 is not significant as this

particular structure of the solution is unstable and the scale of the wave structure

under the bumps is O(10−3). The difference in the simulation of point 10 could be

due to an error in the approximation of the parameter values from Figure 4.2, though

this is the most striking difference from the points. However, these differences are

49

Chapter 4. Time stepping the system and the first variational equation

Figure 4.3: Simulations of point 1 (top left), point 4 (top middle), point 6 (bottom
left), point 9 (bottom middle), and point 10 (right). Space is on the x-axis with
time on the y-axis. Plots show total density at a point in space and time. Note the
resemblance to dynamics observed in Figure 4.2.

not proof of the code not functioning properly because initial conditions are chosen

randomly and for some parameter values there may exist more than one meta-stable

solutions, which becomes more complicating with the long evolution times required to

see convergence to equilibria. Besides these particular points, Figure 4.4 shows figures

from our simulations which show some of the same dynamics seen in Figure 2.5.

Our evolutions of Equation 2.3.5 showcase similar dynamics for the same parameter

values as Eftimie et al. Additionally it showcases a few of the more exotic structures

like zigzag and feather patterns as well as the more basic structures like triple pulses.

Turning our attention to evolving Equation 4.4.5, we remember from Figure 2.6

that we know values in (qa, qr)-space such that the homogeneous steady state is stable.

Therefore we can test our evolution of Equation 4.4.5 using this information. For these

50

4.5. Validation tests of time-steppers

Figure 4.4: Several dynamics from our simulations showcasing similarity to dynamics
observed in Figure 2.5.

51

Chapter 4. Time stepping the system and the first variational equation

tests we choose initial conditions,

u+
0 = 1N,1,

u−0 = 1N,1,

w+
0 = v, v ∈ XN ,

w−0 = z, z ∈ XN .

In addition, we will pick ` = al but this is a trivial choice anyway as we will be choosing

initial parameter conditions,

q`,0 = 0, dq`,0 = 0.

The first test will run with (qa, qr) = (−1, 2) while the second test will run with

(qa, qr) = (−3, 3). The first test is in the region of stability for the homogeneous

steady state so we should see the perturbations decay. The second test is in the region

of instability so we should see perturbations increase. Figure 4.5 shows the results

from this test and you see the expected behaviors do occur in our simulations.

So our tests show that we are getting the right behavior from our simulations but we

have not shown that the methods themselves are working correctly. Therefore we want

to do more tests. The first test we will do is on the time-stepper for Equation 4.1.6. We

will test the dependence of an approximation of the error between the true solution and

the numerical solution we have on the number of grid points and the size of time-steps.

The basic scheme we will use is; choose an initial condition u0. Let us call u(N,∆)

the solution from evolving u0 to a total time of 20 with N grid points and ∆ time-step

size. Then we compute the approximate errors,

Err
(1)
N = ||uN,∆ − uN

2
,∆||L2, Err

(2)
∆ = ||uN,∆ − uN,10∆||L2,

so that Err
(1)
N is the difference between two solutions, with one having twice the grid

points of the other. So Err
(1)
N will tell us how the error approximately depends on the

number of grid points. For pseudo-spectral methods we expect the error to decrease

exponentially as the number of grid points increases. Err
(2)
∆ is the difference between

two solutions, with one having an order of magnitude larger of a time-step than the

52

4.5. Validation tests of time-steppers

Figure 4.5: Initial conditions of tests of the time-stepper for Equation 4.4.5 (left),
results from test within the stability region of the homogeneous steady state (middle),
and results from test outside the stability region of the homogeneous steady state
(right). Bottom plots show the density distributions of perturbations and top plots
show the density distributions of populations.

53

Chapter 4. Time stepping the system and the first variational equation

other. So Err
(2)
∆ will tell us how the error approximately depends on the time-step

size. Since we used a forward Euler approximation in the temporal discretization we

expect O(∆) dependence.

In order to compute Err(1) we need to compute the difference between vectors

which are defined on different numbers of grid points. This problem is dealt with in

noticing that since the number of grid points take the form N = 2m then if we consider

a solution on 2p grid points and another on 2q grid points, assuming q < p without

loss of generality, then their spatial grids will align exactly every 2p−q grid points so

we merely compute the difference between the solutions on these shared grid points.

This process was performed with three different initial conditions; the first are

homogeneous states,

u+
0 = 1N,1 + v, u−0 = 1N,1 + z, v, z ∈ XN ,

the second are inhomogeneous constant-valued states,

u+
0 =

1

2
1N,1 + v, , u−0 =

3

2
1N,1 + z, v, z ∈ XN ,

and the third are squared sine and cosine waves,

u+
0 = sin2(x), u−0 = cos2(x), x =

(
0,

2π

N
, . . . ,

2π

N
(N − 1)

)T
, v, z ∈ XN .

In addition, each of these initial conditions is tested with two different sets of param-

eters,

(qa, qr, qal) = (−1, 2, 0), (qa, qr, qal) = (−1.3, 2.1, 3.6).

Figures 4.6, 4.7, 4.8, 4.9, 4.10, 4.11 shows the results of these tests.

You can see in all cases we do see an exponential decrease in the approximated

error as the number of grid points increases linearly and a linear decrease in error as

the time-step size decreases linearly, although for some cases this is only true below a

certain time-step size but this is reasonable. The time-stepper is functioning correctly.

Next we look to the Taylor series expansion we used earlier to derive the first

variational equation,

f(u+ εw, q` + εdq`) ≈ f(u, q`) + εDf(u, q`)(w, dq`)
T .

54

4.5. Validation tests of time-steppers

Figure 4.6: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) for homogeneous states with 0.01 amplitude
perturbations and (qa, qr, qal) = (−1, 2, 0) with finite difference tests.

55

Chapter 4. Time stepping the system and the first variational equation

Figure 4.7: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) for inhomogeneous constant-valued states
with 0.01 amplitude perturbations and (qa, qr, qal) = (−1, 2, 0) with finite difference
tests.

56

4.5. Validation tests of time-steppers

Figure 4.8: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) for squared sine and cosine states and
(qa, qr, qal) = (−1, 2, 0) with finite difference tests.

57

Chapter 4. Time stepping the system and the first variational equation

Figure 4.9: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) for homogeneous states with 0.01 amplitude
perturbations and (qa, qr, qal) = (−1.3, 2.1, 3.6) with finite difference tests.

58

4.5. Validation tests of time-steppers

Figure 4.10: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) and for inhomogeneous, constant-valued
states with 0.01 amplitude perturbations and (qa, qr, qal) = (−1.3, 2.1, 3.6) with finite
difference tests.

59

Chapter 4. Time stepping the system and the first variational equation

Figure 4.11: Error dependence on the number of grid points (top) along with error
dependence on the time-step size (bottom) and for squared sine and cosine states and
(qa, qr, qal) = (−1.3, 2.1, 3.6) with finite difference tests.

60

4.5. Validation tests of time-steppers

Rearranging we are specifically interested in,

f(u+ εw, q` + εdq`)− f(u, q`)

ε
≈ Df(u, q`)(w, dq`)

T .

The left-hand side can be computed by evolution of Equation 2.3.5 and the right-hand

side can be computed by evolution of Equation 4.4.5. Therefore we will get the best

approximation with respect to ε of the left-hand side and compare it to what we get

for the right-hand side. We begin with the first task at hand. Also let us choose ` = al.

We choose initial conditions u0 = (11,N , 11,N)T and w0 = (v, z), v, z ∈ XN then

set

w0 →
w0

||w0||L2

.

Also let dq` = 1. Then let us call u the solution after evolving the initial condition

u0 to a total time of 100 according to Equation 2.3.5 with parameters (qa, qr, qal) =

(−1.3, 2.1, 3.6). Call u(m) the solution after evolving the initial condition u0 + 10−mw0

to a total time of 160 according to Equation 2.3.5 with parameters (qa, qr, qal) =

(−1.3, 2.1, 3.6 + 10−m). Then

f(u+ εw, q` + εdq`)− f(u, q`)

ε
≈ u(m) − u

10−m

and we define the approximate error,

Err(3)
m =

∣∣∣∣∣∣∣∣um − u10−m
− um−1 − u

10−(m−1)

∣∣∣∣∣∣∣∣
L2

, m = 1, . . . , 16.

The best approximation to Df(u, q`)(w, dq`)
T will be when this error takes its mini-

mum. Let m∗ be such that Err
(3)
m∗ is this minimum. Then call u∗ and w∗ the solution

to Equation 4.4.5, neglecting the parameter and perturbation to the parameter, with

initial conditions u0, q` = 3.6, w0, and dq` = 1. Then form,

Err(4) =

∣∣∣∣∣∣∣∣um∗ − u
10−m∗ − w∗

∣∣∣∣∣∣∣∣
L2

.

It is expected for Err(3) to initially decrease linearly as ε = 10−m decreases until the

approximation stops refining, numerical noise dominates, and the error climbs back

up. Indeed this is what we see in Figure 4.12. Err(3) decreases linearly with respect to

ε to a point and Err(4) is on the same order as the best finite difference approximation.

The time-steppers are working properly judging by our tests.

61

Chapter 4. Time stepping the system and the first variational equation

Figure 4.12: Approximate errors of finite difference approximations to Df(w, dq`)
T

along with comparison of best finite difference approximation to result from time-
stepping Equation 4.4.5, 1.8996e− 07, as title.

62

Chapter 5

Continuation methods

5.1 Motivation and framework

Continuation methods begin with a known solution to a system of equations and traces

out a curve of solutions from your known solution, where each point on the solution

curve corresponds to a different solution with potentially different parameter values.

Figure 5.1 gives an example of one such curve with depictions of the dynamics at

various points. Notice there is a branching point where another curve of solutions

branches at a critical parameter value. The y-axis is typically chosen to measure some

property of the solution but is not significant. The purpose of this depiction is to get

an idea of what types of solutions can be seen for certain parameter values.

In practical applications the system of equations mentioned, which we will denote

as a general condition g(u, λ), is typically a set of algebraic equations or boundary value

problems that describe some specific phenomenon. For our purpose these phenomena

can be steady-state equilibria, periodic orbits, or other more complicated invariant

objects of Equation 2.3.5. The curves as in Figure 5.1 then characterize the types

of dynamics that can be observed from long-term simulations and are powerful tools

from a practical analysis perspective. In the continuation methods we seek to make

guesses from approximately known points satisfying g and then refine these guesses

until they satisfy g well enough.

As mentioned in Chapter 3, time-stepping Equation 2.3.5 until we converge to an

approximate equilibrium can take long evolution times. What continuation methods

give us then is the ability to start from an equilibrium that is assumed converged

and trace out a curve of equilibria from this starting equilibrium. If we wanted to

see the dynamics exhibited by an equilibrium for a particular set of parameters with

63

Chapter 5. Continuation methods

Figure 5.1: A curve of solutions along with another curve branching from it at some
critical parameter value. Fictitious depictions of the shape of the solution is given at 3
points as blue curves in the black boxes. Notice how we can characterize the different
observable dynamics dependent on the parameter with this plot.

our time-steppers we would have to set parameter values, initialize our typical initial

condition, and evolve for a potentially long time. Furthermore, whether or not what

we get at the end of this process is a true equilibrium may also be questionable.

With continuation methods we need only do this process once and we can do it

for values of parameters where we know what the equilibrium should be, such as the

homogeneous steady state in its stability region of parameter space. After we are

pleased with the resolution of our equilibrium we apply continuation methods to see

other equilibria for lots of different parameter values and furthermore the process we

employ to trace out this curve of equilibria will require evolution times up to three

orders of magnitude less than evolution times for getting to the same equilibrium with

just the time-stepper.

In general there are two components to any continuation method, a predictor and

a corrector. The predictor component gives a guess at the next point in the curve of

solutions, typically with extrapolation methods. The corrector component then takes

the guess and refines it until some tolerance on the approximate error of the numerical

64

5.1. Motivation and framework

solution and the true solution at that point is satisfied.

Let us denote by (uk, λk) for k = 0, 1, . . . the points on the curve of solutions which

we compute with continuation methods such that (u0, λ0) is the initial point given by

some other method, which in our case comes from evolution of the Equation 2.3.5.

Successive points are obtained by one iteration of using the predictor component from

the previous point and then refining it with the corrector component. Finally call

(ū0, λ̄0) the point guessed with the predictor and call (ūk, λ̄k) for k = 1, 2, . . . ,M∗

successive iterates of the corrector such that M∗ is the step at which we satisfy the

tolerance on our approximate error.

We will use pseudo-arclength continuation with a Newton corrector as introduced

by Keller. [7] The predictor will then make a guess by extending some step-size, ∆s,

along an approximated tangent, T , of the last known solution point. If uk, λk is our

last known solution point then

(ū0, λ̄0) = (uk, λk) + T∆s.

The choice of ∆s is problem specific and therefore varies, but a general strategy is

to attempt one iteration of the predictor-corrector components at some stepsize, ∆s∗,

and if the corrector fails to converge then restart that step with a reduced step-size

such as ∆s∗

2
. Rinse and repeat until convergence of the corrector is achieved.

The approximated tangent is typically taken as the normalized secant between the

last two computed points. However, when continuing from (u0, λ0) we generally take

the approximated tangent as a unit vector in the direction of the parameter. Figure 5.2

gives a visualization of this process for one iteration.

In general the corrector for pseudo-arclength methods must satisfy some condition,

g, such that u is a solution with parameter λ, and an orthogonality condition so that

(ūk, λ̄k) are in a direction orthogonal to the tangent. Together these are stated as,

g(u, λ) = 0, T · (u− ū0, λ− λ̄0) = 0.

65

Chapter 5. Continuation methods

Figure 5.2: Visualization of one iteration of pseudo-arclength continuation with the
black curve as the true curve of solutions. Prediction extends a distance ∆s along the
tangent and then correction iteratively updates the guess in an orthogonal direction
until it is close enough in some measure.

We apply Newton’s method on this system then to refine our initial guess and get, Dug Dλg

T Tu Tλ

 du

dλ

 =

 −g

−T · (u− ū0, λ− λ̄0)

 .

Formally then, the corrector receives the guess (ū0, λ̄0) from the predictor and itera-

tively generates

(ūk+1, λ̄k+1) = (ūk, λ̄k) + (duk, dλk), k = 0, 1, . . . , until converged

such that the update satisfies the Newton system Dug(ūk, λ̄k) Dλg(ūk, λ̄k)

T Tu Tλ

 duk

dλk

 =

 −g(ūk, λ̄k)

−T · (ūk − ū0, λ̄k − λ̄0)


until the update (duk, dλk) or the residual g(ūk, λ̄k) are small enough. Again recall

(ūM∗ , λ̄M∗) is then the iterate at which this convergence criteria is achieved, then if

(uq, λq) is the last known point on the solution curve then

(uq+1, λq+1) = (ūM∗ , λ̄M∗)

66

5.2. Use of the flow operator and concern of symmetries

and this is the completion of one iteration of the predictor-corrector process and we

may iterate again for the next point.

For our purposes we have that u = (r̂+, ĉ+, r̂−, ĉ−), λ = q`, du = (r̂w
+, ĉw

+, r̂w
−, ĉw

−),

and dλ = dq`. For the condition, g, we vary this depending on the type of equilibria we

are looking for. Steady-state equilibria require u̇ = 0 so q ≡ f . The condition would

change for more complicated equilibria but we brush that aside as we will introduce a

different formulation of our condition with the flow operator.

5.2 Use of the flow operator and concern of symmetries

The flow operator evolves a given state to a certain time τ . Formally we say the flow

operator, φτ , acts on states as

φτu(x, t) = u(x, t+ τ).

By using the flow operator in our condition, g, the Jacobian of the flow acting on

the perturbations du and dλ can be computed by time-stepping the first variational

equation. Though it should be mentioned that there are other ways to achieve matrix-

free continuation methods, by using the flow operator we need only one evolution to

get the matrix-vector product as we will describe in Chapter 5, Section 5.3.

One benefit of using the flow operator is that its Jacobian is better conditioned

for the linear solver we will be using; the Generalized Minimal Residual method (GM-

RES). This is because GMRES functions best when the linear system has a spectrum

which is clustered. The reader may refer to Saad and Schultz for an introduction and

description of GMRES. [12] How does this relate to the Jacobian of the flow operator?

Well, if λ is an eigenvalue of Df and u is an equilibrium then exp(τλ) is an eigenvalue

of the Jacobian of φτ . So if Equation 2.3.5 is dissipative then most of its eigenvalues

will have negative real part and then the spectrum of our flow operator will cluster

near the origin.

However, Equation 2.3.5 has not been shown to be dissipative. Figure 5.3 shows us

the spectrum of the instantaneous Jacobian of Equation 2.3.5 for four equilibria. You

can see for simple equilibria like the homogeneous steady state the entire spectrum has

negative real part but for more complicated equilibria the spectrum starts to get more

67

Chapter 5. Continuation methods

Figure 5.3: Four equilibria shown top as their final time density distributions of pop-
ulations and the spectrum for perturbations of the instantaneous Jacobian of Equa-
tion 2.3.5 about these equilibria on the bottom. Notice that for more exotic dynamics
the spectrum gains more eigenvalues with positive real part.

and more eigenvalues with positive real part. It would not be unreasonable to think

that for even more complicated equilibria the spectrum of the instantaneous Jacobian

could have even more eigenvalues with positive real part and the more eigenvalues

with positive real part the less clustered the spectrum of the Jacobian of the flow will

be, making the system less well conditioned.

With the flow operator we can restate our condition for an equilibrium of the

system. Thus our condition will be

g ≡ φτu− u.

So our Newton system becomes, Duφτ − I Dλφτ

T Tu Tλ

 du

dλ

 =

 −φτu+ u

−T ·
(
(u− ū0, λ− λ̄0)

)
 .

At this point we need to address an issue that can arise with the corrector. Since the

68

5.3. Matrix-free continuation methods

update step in our corrector arises from the solution of the Newton system, degenera-

cies in Dφτ can cause problems with the update. If there exists a neutral direction

such that an eigenvalue of Df is zero, or equivalently an eigenvalue of Dφτ is one,

other than the flow direction then the update may choose to move the solution in that

direction.

The most obvious place this may arise is with the translational symmetry we

mentioned in Section 2. If the corrector is trying to update our approximate solution

point then in the worst case scenario, the update may be exactly in the direction of

the group orbit generated by the translational symmetry. The corrector will continue

translating the solution, never converging, and then our method will fail.

We can remove the degeneracy of the translation symmetry by adjusting our con-

dition as

g ≡ φτu−Θyu

and including the translation y into part of the Newton system. We add one final

condition as a row on the Newton system to ensure the update is orthogonal to the

generator of translations, ux. This makes our Newton system,
Duφτ −Θy Dλφτ Θyux

T Tu Tλ Ty

ux 0 α




du

dλ

dy

 =


−φτu+ Θyu

−T ·
(
u− ū0, λ− λ̄0, y − ȳ0

)
0

 .

The α in the matrix is there to prevent degeneracy when ux ≡ 0 and to better condition

the 3rd row if necessary. There are other degeneracies that exist in Dφτ which we will

go over later in this section but there are not as well understood as the translational

degeneracy. Now we have the framework of the continuation method set up.

5.3 Matrix-free continuation methods

At this point all we need to do to complete the continuation method is define an algo-

rithm to accurately solve the Newton system for the updates. We could use traditional

solving algorithms that solve the general linear system Ax = b, however some of these

use the full matrix and as such require building, storing, and manipulating the entire

matrix. Figure 5.4 shows us that for some choices of the parameter values, we require

69

Chapter 5. Continuation methods

Figure 5.4: Power spectrum of solution (left) along with final time density distribution
plot of populations (right). Notice the large number of grid points required to resolve
the power spectrum well.

spatial resolution upwards of N = 214 which would result in our Newton system being

32770 by 32770. For each new equilibrium point we wish to find with continuation

methods, we can expect about 10 Newton iterations from current simulations, each

requiring us to rebuild and manipulate these matrices. Simulations tracing out curves

have not been done yet so we have no idea how many new equilibrium points will need

to be computed in order to draw significant equilibria curves.

As we mentioned, we will be using GMRES. In addition to the conditioning remarks

we went over before, GMRES can solve the system without the full matrix A. To solve

the linear system all GMRES needs is the matrix-vector product Ax and the constant

vector b.

If we have a way to compute the matrix-vector product, Ax, without actually

forming the matrix A then we have a way to store only vectors for our Newton step.

This is an incredible storage reduction that could speed up the Newton iterations when

compared to traditional methods which use methods that build the matrix.

70

5.3. Matrix-free continuation methods

So now we explicitly form the matrix-vector product,
Duφτ −Θy Dλφτ Θyux

T Tu Tλ Ty

ux 0 α




du

dλ

dy

 ,

term by term until we have an explicit algorithm for the matrix-vector product in full.

We state the matrix-vector product as

(Duφτdu+Dλφτdλ)−Θydu+ Θyuxdy,

T · (du, dλ, dy),

ux · du+ αdy.

For the first term, we can compute (Duφτdu+Dλφτdλ) by evolution of Equation 4.4.5.

Specifically if we initialize the time-stepper for Equation 4.4.5 with

(r̂+, ĉ+, r̂−, ĉ−, q`, r̂w
+, ĉw

+, r̂w
−, ĉw

−, dq`)

and evolve it to time τ . Let w∗ be the solution after this evolution then we know

(Duφτdu+Dλφτdλ) = (r̂w∗
+, ĉw∗

+, r̂w∗
−, ĉw∗

−)

and then this gives us a way to compute this term. [13]

For the second term, we can compute Θydu very easily in Fourier space. Indeed for

the more general Θyf we can state the explicit algorithm for the translational operator

applied to f . We have from the Fourier transform,

f(xj − y, t) =
1√
N

N
2∑

k=−N
2

f̂kφk(xj − y),

=
1√
N

N
2∑

k=−N
2

f̂kφk(xj)φk(−y),

and then we can see

f̂kφk(−y) = f̂k exp (−iky) ,

=
(
r̂f k + iĉf k

)
(cos (ky)− i sin (ky)) ,

=
(
r̂f k cos (ky) + ĉf k sin (ky)

)
+ i
(
ĉf k cos (ky)− r̂f k sin (ky)

)
,

71

Chapter 5. Continuation methods

where f̂k = r̂f k + iĉf k. So this gives us a way to explicitly compute the translation

operator applied to a function easily in Fourier space. So Θyu, Θux, and Θdu can all

be computed with this algorithm as we know the Fourier space representations of u,

ux, and du. We mention that since dy is just a scalar, Θyuxdy is no harder to compute.

The next term, T · (du, dλ, dy) is already explicit as

T · (du, dλ, dy) = T · (r̂w+, ĉw
+, r̂w

−, ĉw
−, dq`, dy).

The term we deal with next is ux · du and is slightly more involved to compute in

Fourier space. We have that

ux · du = 〈ux, du〉 =

∫ 2π

0

(uxdu) dx

and we can apply the Fourier transform to simplify and come up with an explicit

formula for this as,∫ 2π

0

(uxdu) dx =
N−1∑
j=0

 1√
N

N
2∑

k=−N
2

(ikûk)φk(xj)

 1√
N

N
2∑

q=−N
2

d̂uqφq(xj)

[2π

N

] ,

=
2π

N2

 N
2∑

k=−N
2

N
2∑

q=−N
2

(ikûkd̂uq)

(N−1∑
j=0

φk+q(xj)

)
,

=
2π

N2

 N
2∑

k=−N
2

N
2∑

q=−N
2

(ikûkd̂uq)

 (Nδk,−q) ,

=
2π

N

 N
2∑

k=−N
2

ikûkd̂u−k

 ,

=
2π

N

 N
2∑

k=−N
2

ikûkd̂uk

 .

72

5.4. Results and more degeneracy

Then let

Sk = ikûkd̂uk = ik(r̂k + iĉk)(d̂rk − id̂ck),

= ik
[
(r̂kd̂rk + ĉkd̂ck) + i(−r̂kd̂ck + ĉkd̂rk)

]
,

= k
[
(r̂kd̂ck − ĉkd̂rk) + i(r̂kd̂rk + ĉkd̂ck)

]
,

Sk = Rk + iCk, and

ux · du =
2π

N

N
2∑

k=1

(Sk + S−k),

=
2π

N

N
2∑

k=1

((Rk + iCk) + (Rk − iCk)) ,

=
4π

N

N
2∑

k=1

Rk.

Therefore we have an explicit formula as

ux · du =
4π

N

N
2
−1∑

k=1

k(r̂kd̂ck − ĉkd̂rk)

where we have neglected k = N
2

because RN
2

= 0 since ĉN
2

= d̂cN
2

= 0. The last term

we have not dealt with is αdy but this is just scalar-scalar multiplication and is already

explicit. With a way to compute each term in the matrix-vector product we now have

the complete continuation method defined.

5.4 Results and more degeneracy

First we wish to test the corrector software by itself to ensure it is working correctly

before doing any continuation. Figure 5.5 shows the approximate equilibrium we wish

to correct. Figure 5.6 shows the result after the corrector has converged. One may no-

tice the power spectrum of the corrected three bump equilibrium is only just beginning

to decay exponentially and therefore is suspicious. There is a reason this may be hap-

pening. Figure 5.7 shows us the Newton residual and the GMRES residuals for every

Newton iteration. The Newton residuals should decrease quadratically and certainly

should be monotonic. Our Newton residuals however, do not decay quadratically and

are not monotonic. While the GMRES residuals are reasonable, the Newton residu-

73

Chapter 5. Continuation methods

Figure 5.5: Power spectrum (left), total density plot through time (middle), and final
time plot of density distributions (right) of the three bump equilibrium.

Figure 5.6: Power spectrum (left), total density plot through time (middle), and final
time plot of density distributions (right) of the corrected three bump equilibrium.

74

5.4. Results and more degeneracy

Figure 5.7: Newton residuals of the corrector algorithm applied to the three bump
equilibrium (left) along with GMRES residuals for the solution of the Newton system
on each update iteration (right).

als are suspicious. Even worse, when the three bump equilibrium was corrected with

tighter tolerances on the GMRES and Newton iterations the result was not a three

bump equilibrium but was the homogeneous steady state. The corrector is clearly not

working well.

Recent work has been done investigating the eigenvalues of the Newton system

and more degeneracies were found. Figure 5.8 shows us seven eigenvalues and their

associated eigenfunctions of Dφτ . One of these should be the translational degeneracy

we went over earlier and another seems to be coming from highest wave number,

apparent from the high frequency eigenfunction. This degeneracy coming from the

highest wave number should be able to be fixed with de-aliasing to remove at least the

highest wave number. This still leaves five unaccounted for degeneracies. These have

to be better understood before we begin to use the continuation algorithm we have.

75

Chapter 5. Continuation methods

Figure 5.8: Seven degenerate eigenvalues of the Jacobian of the flow operator with
their associated eigenfunctions.

76

Chapter 6

Conclusions and future work

At this point we have a time-stepper for Equation 2.3.5 and Equation 4.4.5. The

simulations from our time-steppers match dynamics observed by Eftimie et al. [9], and

all validation tests show that it is working as expected. However, for some parameter

values the solutions show signs of a Gibb’s phenomenon type error that might be

arising. Furthermore the power spectrum of some of the solutions are not decaying

exponentially, showing signs of aliasing errors. More research needs to be do into these

errors.

We also have the theoretical setup as well as an implemented version of the contin-

uation method. We thought we dealt with all the degeneracies in the Newton system

and the corrector appeared to work for a three bump equilibrium but as was shown by

the Newton residuals, something was going wrong. Indeed we discovered that there

were other degeneracies in the Jacobian of the flow operator. Further work needs to be

done in understanding these degeneracies and then in adding conditions to the Newton

system or performing other fixes, such as de-aliasing at least the highest wave number,

so that the updates to the solution avoid these degenerate directions.

Work is being done by examining the degenerate eigenvectors of some different

equilibria with fundamentally different structures as depicted in Figure 6.1. The num-

ber of degenerate eigenvalues varies depending on which solution we are considering

and these degeneracies seem to have some relation to symmetries of the model which

are also shared by the solution itself. Furthermore there appears to be a degeneracy

caused by the highest wave number but we have ideas on how to fix this.

As for the next steps, after the continuation software is functioning correctly we

can go about drawing out curves of equilibria in parameter space. We will first start

77

Chapter 6. Conclusions and future work

Figure 6.1: Homogeneous steady state (top left), one bump (top middle), two bump
(top right), three bump (bottom left), double zigzag (bottom middle), and triple
feather (bottom right) equilibria.

78

drawing out curves from the homogeneous steady state equilibrium point and compare

results to linear analysis about the homogeneous steady state done by Eftimie et al. [11,

10], to further ensure things are working well. With that assurance along with other

validation tests, such as looking at the Newton residuals, we can go about drawing out

more curves of equilibria and begin to get new results of how Equation 2.3.5 depends

on the parameters. We will then develop software to detect bifurcations as we draw

out the curves so we can begin to draw boundaries in parameter space between regions

of different observable dynamics by adding more conditions to the Newton system that

will ensure our equilibria points are also bifurcation points in parameter space.

79

Chapter 6. Conclusions and future work

80

Bibliography

[1] Petzold L. Ascher, U. Computer Methods for Ordinary Differential Equations and

Differential-Algebraic Equations. Society of Applied and Industrial Mathematics,

1998.

[2] Topaz C. Bernoff, A. A primer of swarm equilibria. SIAM Journal on Applied

Dynamical Systems, 10:212–250, 2011.

[3] Uminsky D. Brecht, J. Predicting pattern formation in particle interactions.

Mathematical Models and Methods in Applied Sciences, 22, 2012.

[4] Buono P. et al. Eftimie, R. In preparation.

[5] Guo A. Fetecau, R. A mathematical model for flight guidance in honeybee swarms.

Bulletin of Mathematical Biology, 74:2600–2621, 2012.

[6] Tunstrm K. Ioannou C. Huepe C. Couzin I. Katz, Y. Inferring the structure and

dynamics of interactions in schooling fish. Proceedings of the National Academy

of Sciences of the United States of America, 108:18720–18725, 2011.

[7] H. Keller. Numerical solution of bifurcation and nonlinear eigenvalue problems.

Applications of Bifurcation Theory, pages 359–384, 1977.

[8] Y. Kuznetsov. Elements of Applied Bifurcation Theory, volume 112. Springer-

Verlag New York, Inc., 2nd edition, 1998.

[9] Eftimie R. de Vries G. Lewis, M. Complex spatial group patterns result from dif-

ferent animal communication mechanisms. Proceedings of the National Academy

of Sciences of the United States of America, 104:6974–6979, 2007.

81

Bibliography

[10] Eftimie R. de Vries G. Lewis, M. Weakly nonlinear analysis of a hyperbolic model

for animal group formation. SIAM Journal on Mathematical Biology, 59:37–74,

2009.

[11] de Vries G. Lewis M. Eftimie R. Lutscher, F. Modeling group formation and activ-

ity patterns in self- organizing collectives of individuals. Bulletin of Mathematical

Biology, 1537-1565, 2007.

[12] Schultz M. Saad, Y. GMRES: A generalized minimal residual algorithm for solv-

ing nonsymmetric linear systems. SIAM Journal on Scientific and Statistical

Computing, 7:856–869, 1986.

[13] Net M. Garćıa-Archilla B. Simó C. Sánchez, J. Newton-Krylov continuation of

periodic orbits for navier-stokes flows. Journal of Computational Physics, 11-33,

2004.

[14] Bernoff A. Leverentz-A. Topaz, C. Asymptotic dynamics of attractive-repulsive

swarms. Journal on Applied Dynamical Systems, 8:880–908, 2009.

[15] L. Trefethen. Spectral methods in MATLAB. Society for Industrial and Applied

Mathematics, 2000.

82

