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Abstract

The goal of this thesis is to study the emergence of spatiotemporal waves in neural
field models. Neural field models aim to describe the activity of populations of neurons
at a mesoscopic scale, considering averaged neuronal states dependent on continuous
space and time. Mathematically, they are composed of spatial and temporal inte-
gral operators on domains of anatomical interest. The cortex is modelled as a two
dimensional sheet, and under physiological assumptions for the spatial extent of con-
nectivities, it is shown when the principal transition from resting to active states will
result in the formation of waves. This thesis starts with a derivation for the integral
operators from a physiological viewpoint. The notion of a dynamical system is then
introduced, and theory relevant to the spontaneous emergence of activity is discussed.
The thesis progresses to applying the dynamical systems view to neural fields, leading
to an understanding of the transitions from inactive resting states to space dependent
temporal oscillations – waves. For tractable analysis, the active states are restricted
to have square periodic symmetry.
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This thesis is directed at studying the nonlinear behaviour of wave forming bifurca-
tions for mesoscopic models of cortical activity. The work presented here is at the
forefront of both applied mathematics and mathematical neuroscience, having i) gen-
eral applicability to equations defined on two dimensional spatial domains with space
dependent delays, and ii) specific novel results for neural models that contain long
range excitatory connections and delays induced by finite transmission speeds.

1.1 Overview

A brief overview of cortex physiology is presented in Chapter 2, followed quickly by
a semi-heuristic derivation of the spatiotemporal neural field operator. Two specific
models that make use of this operator are then presented, and their relevance to the
physiology discussed.

Chapter 3 gives an introductory view into the world of dynamical systems. While
this is indeed a rather large world, a few specific topics relevant to setting up the
analyses we perform are presented in some detail. These topics include equilibria bi-
furcations, normal forms, spatially extended systems, symmetry, and numerical con-
tinuation applied to each of these scenarios.

Chapter 4 is where the results start. It begins slowly, presenting results that
could easily be found in existing works, but quickly builds to the nonlinear analysis
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2 1.2. An historical note

of the wave forming bifurcation. A normal form for an arbitrary scalar neural field
model – one that contains an arbitrary temporal operator (synapse) and an arbitrary
spatiotemporal connectivity – that captures the dynamics of two dimensional waves
with square periodic symmetry is obtained, with symbolic expressions for the normal
form coefficients. Predictions of this normal form are confirmed with direct numerical
simulation of the spatiotemporally delayed system.

In Chapter 5, a couple of things happen. First, the analysis of the wave form-
ing bifurcation from the previous chapter is extended to handle a more complicated
system of two coupled populations of neurons. This model is complicated both by
the addition of interacting populations, and by the separation of postsynaptic and
soma membrane potential dynamics. Next, numerical software is developed for gen-
eral purpose simulation of this complicated model. The software is turned towards the
neighbourhood of the wave forming bifurcation, eventually leading to a continuation
of one of the branches of waves that emerge.

1.2 An historical note

The work presented in this thesis has been laid out in the progression that makes the
most logical sense. This is not, however, the progression in which it was conducted.
Perhaps many who have gone through the doctoral process can relate, or maybe they
can not. For me, personally, I can not help but chuckle when considering my initial
viewpoints and expected progression of the work. So much ignorance in those days,
yet so much more now.

For the reader who would like in on this humour, the one who wishes to read this
work in its temporal ordering, the results would progress as follows.

• Read Chapter 5, ignoring any reference to the integral formulation of Liley’s
model. Also ignore anything to do with the dynamic Turing bifurcation, as our
initial abilities to compute this thing were non existent.

• Skim Appendix B.1.1-B.3, to get an idea of how we were originally planning on
studying neural field models.

• Read Chapter 4 in its entirety, and maybe glance at Appendix A. This chapter
was the result of us not understanding the dynamic Turing bifurcation at all, and
discovering that no relevant literature existed for neural fields in two dimensional
space.

• Go back to Chapter 5, now considering all things that have to do with the dis-
persion relation, all things that have to do with the integral representation of the
model, and all unfoldings of square symmetric wave modes in the neighbourhood
of dynamic Turing bifurcations.

With this temporal history, some of the results, particularly with respect to Liley’s
model, do not fit together as perfectly as I would have liked. From my experience, I
can only say that this is just the nature of a doctoral dissertation.
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1.3 Publications

The publication of results from this thesis tell a similar story to the historical note
above. The numerical algorithms and general simulation tools for Liley’s model (Sec-
tions 5.1.3, 5.1.4, and Appendix B.2) are published in [2]. After this, the numerical
tools were turned towards computing a branch of supercritical standing wave solutions
(Section 5.3.2) with results published in [3].

The normal form results at the wave forming bifurcation in the scalar field (Chap-
ter 4, and Appendix A) are currently under review, and consist of a heavily modified
version of the technical report [1]. The numerical normal form computations in Liley’s
model are currently unpublished results.
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This section introduces some of the relevant physiology needed to place the models
that will be studied. After this, a brief historical view of the progression of neural
field/mass modelling is given, moving from the models of Wilson & Cowan [37] forward
to Liley’s mean field model of the cortex [26]. From there, the integral operators that
are commonly found in these models are then derived from a semi-heuristic viewpoint,
and the two specific models studied in this thesis are presented in terms of these
operators.

5
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2.1 Neocortex physiology

2.1.1 Structure of the human brain

One possible decomposition of the human brain is into the following three high-level
regions: cerebrum, cerebellum, and brain stem [21], as visualized in Figure 2.1.

The cerebrum is divided into a left and right hemisphere and accounts for most of
our brains’ mass. The hemispheres consist of a wrinkled outer layer of grey matter –
the cerebral cortex, consisting mostly of unmyelinated neurons and glial cells – which
is supported by an inner layer of white matter, which also consists of glial cells, but
contains myelinated axons of neurons as well. The left and right hemispheres of the
cerebrum are linked through a structure called the corpus callosum, which is visible
in Figure 2.2.

The unmyelinated neurons in the cerebral cortex are responsible for local con-
nections within the cortex, while the myelinated axons of the white matter connect
the different regions of a cerebral hemisphere to each other, as well as to lower brain
centres. The myelin covering of an axon assists with signal transmission properties,
increasing speed of transmission while decreasing signal degradation. This allows
neurons with myelinated axons to communicate effectively at longer distances.

The cerebral cortex is where much of the higher processing in humans occurs,
and it is divided into four lobes: frontal, parietal, temporal and occipital. Each lobe
handles various functions, for example the frontal lobes are responsible for functions
such as judgement, foresight, and personality [7, 23]. The parietal lobe houses the
primary somatosensory cortex, responsible for handling the tactile representation for
our sense of touch. Another example, the occipital cortex, houses the primary visual
cortex which is responsible for the processing of our visual field.

Despite the large number of functions that the cortex handles, and this apparent
separation into lobes, the structure of the neurons within it remains qualitatively
similar throughout. This is a large motivating factor for our work: To study the
cortex through models related to its physiological structure.

Deeper within the cerebral hemispheres are many more structures, such as the
basal ganglia, thalamus, hypothalamus, hippocampus, and the amygdaloid nuclei to
name a few. Discussion of the functions of these deeper cerebral structures is deferred
at this point for brevity. This thesis will focus on modelling the cortex, so the reader
should consult a more prominent source, such as Kandel [21], for details regarding
these deeper cerebral structures, the cerebellum, and the brain stem.

2.1.2 The pyramidal cell

Neurons are often thought of as the fundamental building blocks of the brain. They
come in many variations based on their location and role. The type of neurons most
abundant in the neocortex are called pyramidal cells due to their shape. The main
components of these pyramidal cells are their cell body (soma), dendrites and axon.
A pyramidal cell is shown in Figure 2.3.
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Figure 2.1: Schematic view of the exterior of the human brain. Left: The cerebrum
is split into two hemispheres. Image modified from Blausen Gallery 2014 licensed
under CC BY 3.0. Right: Both hemispheres can be divided into separate lobes:
frontal, parietal, temporal, and occipital, which are generally responsible for handling
different cognitive functions. Also visible from the exterior are the cerebellum and the
brain stem. Image modified from Cancer Research UK licensed under CC BY-SA
4.0.

When a neuron is not firing, it maintains a balance of Na+, K+ and Ca2+ ions such
that the interior of the neuron is at an electric potential of about −70 mV relative to
the outside. This is called the rest potential. If the neuron receives enough excitatory
input such that this potential difference depolarizes to some critical value, somewhere
around −55 mV, the neuron produces an action potential, a rapid depolarization and
repolarization of the membrane potential, which travels down the axon. Hodgkin &
Huxley developed the original nonlinear model for this firing phenomenon based on
measurements of the membrane potentials of squid giant axons [18].

Communication between neurons is then done via neurotransmitters, released from
an axonal branch once an action potential has reached the end. The neurotransmitters
are released into the space between the neurons, called a synapse, and picked up by
the dendrites of other neurons. In principle, a neuron can release both excitatory
and inhibitory neurotransmitters to communicate, but about 90% of the neurons
within the cortex seem to be dedicated to one or the other [32]. To give an idea
of the composition of the human neocortex, the primary inhibitory neurotransmitter
(gamma-aminobutyric acid, GABA) accounts for 20% to 44% of all neurotransmitters
within it [33].

2.1.3 Cortical columns

Every larger structure we speak of, e.g., the hippocampus or the cerebral cortex, is
composed of millions to billions of a variety of neurons. The human neocortex however,
seems to be made up itself of functional units that are composed of many neurons
in groupings that are perpendicular to the cortical surface. These units that fire

http://dx.doi.org/DOI:10.15347/wjm/2014.010
http://creativecommons.org/licenses/by/3.0
http://commons.wikimedia.org/wiki/File%3ADiagram_showing_some_of_the_main_areas_of_the_brain_CRUK_188.svg
http://creativecommons.org/licenses/by-sa/4.0
http://creativecommons.org/licenses/by-sa/4.0
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Figure 2.2: View of the interior of the human brain, showing deeper structure from two
cross sections. Top: Cross section through the coronal plane, showing both cerebral
hemispheres. Gyri and sulci are highlighted in the cerebral cortex, and the corpus
callosum is labelled. While other deeper cerebrum structures could be highlighted
from this view, we omit labels for brevity. Image modified from John A. Beal licensed
under CC BY 2.5. Bottom: Schematic cross section through the sagittal plane
(cerebellum omitted), showing the right cerebral hemisphere. This view also shows
division of the brain stem into the midbrain, pons, and medulla. Image modified from
OpenStax College licensed under CC BY 3.0.

http://
http://creativecommons.org/licenses/by/2.5
http://commons.wikimedia.org/wiki/File%3A1311_Brain_Stem.jpg
http://creativecommons.org/licenses/by/3.0
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Figure 2.3: A single pyramidal neuron. The dendrites are stimulated by neurotrans-
mitters from other neurons, and their resulting potentials are summed at the soma.
Once the soma potential is above a threshold, the neuron undergoes an action po-
tential that travels through the axon and its branches, releasing neurotransmitters to
other neurons. Image from Bob Jacobs licensed under CC BY-SA-2.5.

coherently are referred to as minicolumns, and are composed of about 100 pyramidal
cells and a million or so synapses, all in a radius of about 0.03 mm. In some regions of
the cortex, even larger scale has been observed: Macrocolumns, which are composed
of 80 or so minicolumns, and have radii around 0.5 mm [32].

This idea of a macrocolumnar scale comes originally from Mountcastle [29], who
determined that neurons perpendicular to the local cortical surface have common
receptive fields at about this length scale. The receptive field of a neuron is a region
in space in which the presence of a stimulus will alter the behaviour of that neuron.
Thus, this scale is relevant for elements of sensory cortex.

Mountcastle, for example, looked at the neural response to applying pressure
(among other things) to various regions of cats’ skin. For a given location, correlated
neuronal firing in the cortex was observed mostly in localized regions perpendicular
to the local cortical surface. It is for this reason that macrocolumns are thought of as
the functional scale of the cortex. These macrocolumns can overlap, but the degree
to which they do is not very well known, and most likely varies with region. While
this idea originated in the 1950s, it is still considered to be a useful scale for cortex
dynamics [30], provided one is wary of all the ways that the term cortical column is
used [35].

In humans, the columns in the neocortex have six layers numbered from outermost
to innermost I-VI, as shown in Figure 2.4. Layers I and VI are responsible mostly for
intracortical and corticocortical excitation. The middle layers are where most of the
relatively short range inhibition takes place. In addition to being densely connected
to itself, the cortex is also connected to the thalamus. Various types of connections
can be found between the thalamus and cortex layers I, IV, and VI. Even beyond this,
layers V and VI are connected to other regions such as the brain stem.

The number of neurons that connect the cortex to itself far outweigh the number

http://commons.wikimedia.org/wiki/File:GolgiStainedPyramidalCell.jpg
http://creativecommons.org/licenses/by-sa/2.5/
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Figure 2.4: Representation of a cortical column. The white arrows show excitatory
(intracortical and corticocortical) connections, and the black arrows show inhibitory.
The hourglass shape shows the tendency for excitation to spread to neighbouring
columns through layers I and VI, while inhibitory influence is localized to the interior
layers. Used with permission from Nunez, 2006 [32].

that connect it to other parts of the brain. This is typically used as a modelling
argument for studying models of an isolated cortex, with the possibility of extraneous
input. The use of this argument must be done with care, however, as a few syn-
chronous signals can be much more influential than a large number of asynchronous
ones. Thus, sparse synchronized input from other parts of the brain may be important.

However, experiments such as those done by Gebber et al. [14], have demonstrated
that the cortex is not just a slave to some sub-cortical pacemaker, and that it must be
capable of sustained deterministic oscillations. Whether the circumstances for these
oscillations can be met by looking at just an isolated cortex, or if mutual coupling to
another structure, i.e., the thalamus, is needed is still an open question.

2.1.4 Towards measurement

Measuring temporally precise electrical activity of the human cortex is restricted to a
few methods, if we limit ourselves to non-invasive measurements. The two most com-
monly used methods are electroencephalography (EEG), and magnetoencephalogra-
phy (MEG).

EEG relies on measuring the electric fields by using electrodes on the scalp and,
under some circumstances, within the cranium. The benefits of using this are that it
is relatively cheap and easy to get measurements of electrical activity in the cortex
with high temporal resolution. As the EEG is connected to the scalp, any signals
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Figure 2.5: Dipole layers in the cortex. Signals must pass through CSF, skull, and
scalp before being picked up by EEG or MEG. Used with permission from Nunez,
2006 [32].

measured are filtered through the various layers of the human cranium. This filter-
ing can be somewhat taken into account with n-sphere models, which treat n − 1
layers of tissue with distinct electrical properties between the cortical surface and
the scalp. Some common choices are the 3-sphere (brain, skull and scalp) and the
4-sphere (brain, cerebrospinal fluid (CSF), skull, and scalp). These are approximate
models, both geometrically and electrically, of the human head. While more precise
geometrical information can be obtained for a given subject, the electrical properties
of the tissues are more difficult to obtain on a person to person basis, and still must
be approximated. Due to the fact that the relative permittivity of biological tissues
varies greatly [32], small unknowns in the electrical/geometrical properties produce
large variation in the electrical field, making it a difficult task to relate the electrode
measurements to the underlying electrical activity with high confidence.

MEG relies on measuring magnetic fields using magnetometers outside of the head.
The magnetic fields are generated by small currents within the columns of the neo-
cortex. The main benefit of MEG is that it can provide measurement of electrical
activity with the same temporal resolution of the EEG, and can give a much higher
spatial resolution. The reason for this is that the relative magnetic permeability of
biological tissues (in particular, the CSF, skull, and scalp) are very similar, effectively
removing some of the unknown that is inherent in the EEG measurements [32].

The currents within the cortex are aligned mostly with the columns, i.e., a firing
neuron produces a potential difference between the soma and the tip of the axon [32].
Since the axons of pyramidal cells are, for the most part, perpendicular to the local
cortical surface, this translates into currents that are perpendicular as well.

The EEG is most sensitive to currents that are perpendicular to the scalp. The
reason for this becomes clear when one considers the electric potential of a current
dipole [20], and makes the connection that EEG is measuring such an electric po-
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Figure 2.6: Power of the electric field for ideal current dipoles. This is proportional
to cos2 θ where θ is the angle between the dipole alignment and the position vectors
[20]. Left : Dipoles aligned perpendicular to the scalp (in crowns of gyri) Contribute
largely to electrode measurements at the scalp. Right : Dipoles aligned parallel to the
scalp (in superficial sulci) do not contribute much to electrode measurements at the
scalp.

tential. The potential is proportional to cos θ, with θ the relative angle between the
dipole alignment and the position vectors, maximizing when these are parallel or
antiparallel as seen in Figure 2.6. Thus, EEG readings are primarily the result of
electrical activity in the crowns of the gyral surfaces as seen in Figure 2.5. Currents
found in the columns of sulci are closer to parallel with the scalp. On top of the fact
that this orientation produces weaker electric fields at the scalp, the fields generated
from neighbouring sulcal walls tend to cancel out due to the geometry [32]. With all
of this considered, the geometry of the cortical surface and the spreading of signals in
the scalp, it turns out that for a discernible signal to appear in the EEG, it is required
that about 6 cm2 of synchronous activity must be occurring in the cortical gyri. This
means that from scalp EEG readings alone, we are not able to resolve the dynamics
of the cortex at length scales smaller than this.

The MEG is most sensitive to activity in superficial sulci of the cortex. The reason,
again, comes from electromagnetic theory. Considering a magnetic field generated
by a current dipole, the power of the field is proportional to sin2 θ, where θ is the
relative angle between the dipole alignment and the position vectors. The power is
thus maximum in the θ = ±π/2 direction, i.e., perpendicular to the alignment of the
current. This is visualized in Figure 2.7, showing that the strongest magnetic field
measurements should come from currents aligned horizontal to the scalp, i.e., in the
column in a sulcus.

It is beneficial to view measurement of EEG and MEG as complementary, combin-
ing both to get the best possible (non-invasive) view of the electrical activity within
the cortex. For example, Aydin et al. recently show how the combination of EEG and
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Figure 2.7: Power of the magnetic field for ideal current dipoles. This is propor-
tional to sin2 θ where θ is the angle between the dipole alignment and the position
vectors [20]. Left : Dipoles aligned perpendicular to the scalp (in crowns of gyri) do
not contribute much to magnetometer measurements at the scalp. Right : Dipoles
aligned parallel to the scalp (in superficial sulci) contribute most to magnetometer
measurements at the scalp.

MEG measurements can permit more conclusive results for source localization than
either of the single methods alone [2].

2.1.5 EEG rhythms

When scalp EEG measurements are performed, the temporal dynamics are typically
transformed to frequency space. In frequency space, different names are given to differ-
ent frequency bands. In particular, there are five major divisions into which readings
are binned: delta, theta, alpha, beta, and gamma in increasing order, displayed in
Table 2.1.

The relative power in each of these bands at different locations of the brain can

Band Frequency range

delta, δ < 4 Hz

theta, θ 4 - 8 Hz

alpha, α 8 - 13 Hz

beta, β 13 - 20 Hz

gamma, γ > 20 Hz

Table 2.1: The 4 major divisions in brain activity readings.
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correlate with different aspects of consciousness. For example, the alpha band typ-
ically has the largest peak power over the occipital lobes when the subject is in an
eyes closed resting state. This alpha peak disappears when the eyes are opened, or
when the subject sets their focus to some cognitive task.

Alpha band and the lower frequencies are often the focus of scalp EEG readings.
The reason for this is because of the nature of power dissipation through the skull
and scalp. The resistive properties of these tissues effectively lead to a low pass
filter, attenuating the higher frequencies more so than the lower. Oscillations with
frequencies in the higher bands can be measured, but because of the low pass filtering,
they can be seen at the scalp only when relatively large regions of the cortex are
synchronously active.

Models for the electrical activity of the cortex are often not formulated at as coarse
of a scale as the scalp EEG reads. It is instead typical to see models developed at the
length scale of local field potentials (LFP), which can be measured only from within
the cranium. LFP measures the combined activity of many dendrites at a submillime-
tre scale [21]. The benefit of modelling at this scale is that it is intermediary between
our network understanding of neural connections and the non-invasive measurement
discussed above.

It is this scale that neural fields aim to model, and so the next section will proceed
with prescribing what constitutes a neural field.

2.2 Neural field models

This section will introduce the mathematics used in defining neural field models. We
begin by writing a neural population as an averaged view of simple neurons, and
continue by extending that with delayed spatial connections. In this progression, the
relation of presynaptic firing rates to postsynaptic potentials is done in a semi-rigorous
manner, with the spatiotemporal axonal connectivity added in a more heuristic way.
The result is a specific combination of integrals over space and time which can model
a spatially extended neural population in an averaged sense. The combination can
be used to construct more complicated models involving multiple populations. The
derivation here is performed from the viewpoint of postsynaptic potentials. Since
postsynaptic potential is linearly proportional to the dendritic current [32], the form
of the resulting operator can be applied to either postsynaptic current or potential.

The combination of integrals will then be used to construct two separate models for
neural activity. The first is the most simple model involving a single population with
input from an external source. The second involves two populations, and considers the
soma membrane potential dynamics in addition to the postsynaptic potentials. We
write this second model, Liley’s model, in a more general form than it was originally
derived, but make note of the explicit assumptions that lead to the partial differential
equation (PDE) model of the original paper [26].
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2.2.1 A brief history of neural masses

The idea that we can treat large assemblies of neurons with continuum variables
seems to be first introduced by Beurle in the 1950s [3], with slight modification later
by Griffith [16, 17]. These initial attempts were focused on describing the generation
and propagation of large scale activity in networks of excitatory neurons with the
continuum variables commonly referred to as synaptic fields. The models are most
simply expressed through integro-differential equations (IDEs). In the 1970s, Wilson
and Cowan [37, 38] extended Beurle’s work to incorporate inhibitory neurons and
refractory (recovery) periods as well. The addition of refractoriness can be important,
since neurons are unable to fire continuously. Dynamical analysis at time scales near
this refractory period (∼ 1 ms) will depend heavily on this.

An important extension from Wilson and Cowan was made shortly after by Nunez
[31]. Where the IDE model of Wilson and Cowan essentially contained an infinite
propagation speed of the signals, Nunez’s model incorporated a propagation speed in
terms of a spatiotemporal lag in the integral kernel. This was analyzed for a single
population model.

From here, Amari [1] started to look at pattern formation under natural assump-
tions for connectivity and firing functions. Amari considered models with lateral
inhibition, i.e., local excitation and long range inhibition. I note here that this is a
feature of some neural systems, such as that of the retina, but it is clearly different
from the view of the cortex presented in Figure 2.4.

It was also around this time that Freeman published a text on the role of meso-
scopic modelling in neural systems [12]. While much of Freeman’s work at the time
was based on linear models (i.e., motivated by electromagnetic theory), he has played
an important role in the development of new approaches to the problem of relating
continuous models to experimental data [13].

These seminal works on neural fields provided a basis for many years of research,
during which the focus was mostly on qualitative behaviour of these models. Dy-
namic behaviour typically present are spatially and temporally periodic patterns [10],
localized activity [22, 25], and travelling waves [34]. A very cohesive review of the
dynamics of neural fields is presented in short by Coombes [8, 9], and more recently
in long by Bressloff [5].

In 2001, Liley introduced a modified model of the cortex [26]. The goal here
was to create a physiologically paramaterized extension of Wilson and Cowan type
models. The main motivation for this extension is that the previous models focused
on fields that were first order in time. When considering two interacting populations
(neglecting space), this does not allow for the development of chaotic solutions. This
also means that the linearized equations, when driven by white noise, will only be
capable of producing a single resonance peak. Chaos and multiple spectral peaks are
seen in EEG [14], so perhaps a model should exist that allows for these features.

Liley’s model treats excitatory and inhibitory populations separately, based on the
claim that most of the neurons in the cortex are specialized (made at the end of section
2.1.2) and chooses to model the average soma membrane potential of each population
in addition to the postsynaptic potentials generated by the synaptic coupling between
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them.

2.2.2 Neural field components

There are three main components that form the basis of neural field modelling,

1. Synaptic coupling,
2. Firing (transfer) functions, and
3. Spatiotemporal connectivity.

From these, models can be created that vary from simple activity models, taking the
form of a single scalar equation, to models with multiple populations which can also
include additional dynamics for membrane potentials.

Synaptic coupling

First, we take the postsynaptic potential to be the variable V (t), t ≥ 0. Then we
define h(t) to be the postsynaptic response to a single incoming incoming pulse, i.e.,
V (t) = h(t) for a single (delta-function) input at time zero. If we now consider a train
of incoming delta-function pulses as P (t), then the postsynaptic response will be a
convolution of h(t) with this train,

V (t) =

∫ t

−∞
dτ h(t− τ)P (τ).

Experimental studies, such as those performed by Freeman [12], have shown this to
be a good model for single neurons, and in fact, network models of neural activity
(like in the network simulator NEST [15] or the Blue Brain project [27]) employ this
view for their individual elements.

Considering a neural population now, with various types of synapses, various den-
drites, and multiple pulse trains, the average postsynaptic potential V̄ (t) in response
to the average population firing rate P̄ (t) will behave in a similar manner,

V̄ (t) =

∫ t

−∞
dτ η(t− τ)P̄ (τ), (2.2.1)

with η(t) representing population response to an average pulse rate. While the time
response of a population of synapses may differ to that of a single neuron, it may have
the same functional form with just different parameters [12, 39]. To simplify notation,
the temporal convolution of Eq. (2.2.1) is written as the operator ∗,

(
η ∗ P̄

)
(t) =

∫ t

−∞
dτ η(t− τ)P̄ (τ). (2.2.2)

This forms a solid base for modelling a neural population, but it is not closed in
the sense that it relies on some average quantity being known. That is, knowing the
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average population firing rate, we can determine the average postsynaptic potential,
and vice versa. Closing the model requires another (independent) way of relating
these quantities.

Firing functions

To relate the number of firing neurons (i.e., the average firing rate) to the average
postsynaptic potential of a closed population, we will start from a simple model of a
single neuron with a single dendrite, the so-called McCulloch-Pitts model [28]:

P (t) = SmaxΘ
(
V (t)− Vth

)
=

{
0, V (t) < Vth

Smax, V (t) > Vth
, (2.2.3)

and follow a similar argument to that presented in Hutt & Atay [19]. Here, Θ is the
Heaviside step function, and Vth is a threshold postsynaptic potential. This simple
model says that if a neuron’s postsynaptic potential is above a certain value, then
that means it is receiving pulses at a fixed rate Smax. Adding to this, we can consider
a distribution of dendrites on the neuron with different thresholds, D(Vth, t). This
distribution can, in general, change in time to account for refractory periods of the
neuron. Incorporating this, a neuron with dendrites distributed according to D will
have a firing rate given by

P (t) =

∫ ∞

−∞
dVthD(Vth, t)SmaxΘ

(
V (t)− Vth

)
.

Next we consider a population of neurons with postsynaptic potentials that follow a
distribution about its average ρ(V − V̄ (t)). The expected firing rate of this population
can be expressed

P (t) =

∫ ∞

−∞
dV ρ(V − V̄ (t))

∫ ∞

−∞
dVthD(Vth, t)SmaxΘ

(
V − Vth

)
,

with V now representing the randomly distributed potentials at time t.
To proceed, we average the pulse activity over a time scale ∆t, assuming that the

postsynaptic potentials vary on a time scale greater than this,

P̄ (t) =
1

∆t

∫ t+∆t

t

dτ P (τ)

≈
∫ ∞

−∞
dV ρ(V − V̄ (t))

∫ ∞

−∞
dVth D̄(Vth, t)SmaxΘ

(
V − Vth

)
.

The argument in the Heaviside function can be used, and the limits of integration
adapted, and a general expression for the average firing rate of the population is
obtained

P̄ (t) = Smax

∫ ∞

−∞
dV ρ(V )

∫ V+V (t)

−∞
dVth D̄(Vth, t).
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If we consider D̄ to be constant in time, D̄(Vth, t) = D̄(Vth) then we can rewrite the
average firing rate in terms of the postsynaptic potential, calling it the firing function

S[V̄ (t)] = Smax

∫ ∞

−∞
dV ρ(V )

∫ V+V̄ (t)

−∞
dVth D̄(Vth). (2.2.4)

This closes the model, Eq. (2.2.1), as we can now write

V (t) = η ∗ S ◦ V (t) (2.2.5)

Now, if we assume a normal distribution of postsynaptic potentials,

ρ(V ) =
1

σPSP

√
2π

exp

(
− V 2

2σ2
PSP

)
,

and a normal distribution of synapses about an average threshold V̄th,

D(Vth) =
1

σsyn
√
2π

exp

(
−(Vth − V̄th)

2

2σ2
syn

)
,

then the firing function takes the form

S(V ) =
Smax

2

(
1 + erf

(
V − V̄th√

2σ

))
, (2.2.6)

with erf being the Gaussian error function, and σ2 = σ2
PSP + σ2

syn.
This process of going from a single McCulloch-Pitts neuron to population firing

function is displayed in Figure 2.8. While Eq. (2.2.6) holds exactly for normally
distributed statistics, it is generally replaced with another sigmoidal form that roughly
has the same shape. This is acceptable because the assumption on the dendrite
distribution is weak. Were it replaced with some other distribution, the exact equation
would not hold, but since S is essentially a scaling of cumulative distribution functions,
the sigmoidal shape should remain.

Spatiotemporal connectivity

The previous two subsections have made no mention of the spatial extent of the
neural population, aside from the dynamical equations being locally averaged over
cortical columns. Now we introduce a synaptic coupling strength w which can be ei-
ther positive, representing dominance of excitatory synaptic connections, or negative,
representing dominance of inhibitory synapses

V̄ (t) = w η ∗ S ◦ V̄ (t).

This now allows us to consider continuous spatial coupling of neural populations.
Taking our averaged postsynaptic potential to be a function of both space and time,
V̄ (x, t), x ∈ Ω, we extend the coupling strength to be a function of two spatial
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Figure 2.8: Top left: McCulloch-Pitts model for a single neuron. Top right: Many
McCulloch-Pitts neurons with firing thresholds distributed according to a normal
distribution. Bottom: Effective firing function for a normally distributed population
of McCulloch-Pitts neurons (Gaussian error function) compared to a sigmoid with a
simpler functional form.

coordinates w(x,x′), from source x′ to destination x. Thus, the average postsynaptic
potential at position x can be taken as a sum over all of the source positions in the
domain

V̄ (x, t) = η ∗
∫
Ω

dnx′w(x,x′)S ◦ V̄ (x′, t)

noting that n is the spatial dimension of Ω.
This model says that the communication between all neurons within the domain is

instantaneous. This is physically not plausible, so a temporal delay that is dependent
on source and destination locations, s(x,x′), is introduced

V̄ (x, t) = η ∗
∫
Ω

dnxw(x,x′)S ◦ V̄ (x′, t− s(x,x′))

= η ∗
∫ ∞

−∞
dt′
∫
Ω

dnx′ w(x,x′)δ(t− t′ + s(x,x′))︸ ︷︷ ︸
K(x,x′,t−t′)

S ◦ V̄ (x′, t′),

with δ(·) the Dirac delta function. The physical interpretation of this when we consider
a constant axonal transmission speed c for the entire field is displayed in Figure 2.9.
Writing the equation with the delta function leads to the notion of spatiotemporal
connectivity

K(x,x′, t) = w(x,x′)δ (t+ s(x,x′)) , (2.2.7)

coupling points in space and time.
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c

Figure 2.9: View of spatiotemporal connectivity on 2D domain Ω. Neurons at x′ are
connected to neurons at x with coupling strength w(x,x′). For signals propagating
with a constant axonal speed c, the influence of this connection is delayed by s(x,x′) =
∥x− x′∥/c.

With the spatiotemporal connectivity, we define the spatiotemporal integral oper-
ator, ⊗, as

(K ⊗ g) (x, t) =

∫ ∞

−∞
dt′
∫
Ω

dx′1x
′
2K (x,x′, t− t′) g (x′, t′) , (2.2.8)

leading to a very concise notation for a model of the averaged postsynaptic potential

V̄ (t) = η ∗K ⊗ S ◦ V̄ (t).

This is the specific combination of integrals that so often arises in neural field
modelling,

η ∗K ⊗ S◦ (2.2.9)

being able to describe elements in the models from Amari [1] to that of Liley [26].

2.3 Scalar neural field

The single equation IDE,

u(x, t) = η ∗
(
K ⊗ S ◦ u(x, t) + p

)
. (2.3.1)

This equation has shown up in many papers, originating back to Amari in 1977 [1] who
considered it in one spatial dimension without the presence of delays, s(x,x′) = 0.

Since there is not much more to say about this model that has not been men-
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Figure 2.10: The postsynaptic potential response V̄ (t) of neurons with a single
exponential time scales in response to a delta function input (i.e., a pulse). These are
the solution to Eq. (2.2.1) with P̄ (t) = δ(0). Note that the rise of this response is
instantaneous, which is an unphysical feature.

tioned in the component derivations above, we give some specific instances of relevant
components that will be analyzed in the coming chapter.

2.3.1 Specific components

For the firing function, work in this thesis makes use exclusively of sigmoids of the
form

S(x) =
Smax

1 + e−C(x−θ)
. (2.3.2)

The three parameters relating to the average firing threshold, θ, the maximal firing
rate Smax and the steepness at threshold C. A specific instance of this function is
plotted in the bottom panel of Figure 2.8, alongside the more formal derivation of the
error function sigmoid previously discussed.

For synaptic connectivity, there are a few common choices. The first and most
simple is the single exponential time scale

η(t) =
1

τ
e−t/τ . (2.3.3)

This model synapse has been found to work well for individual neurons as in, and also
for neural populations.

The main flaw of the single exponential synapse is that the dendritic response
in the postsynaptic neuron is inherently discontinuous, seen in Figure 2.10. That



22 2.3. Scalar neural field

0

Time

0
P

o
st

sy
n

a
p

ti
c

p
o
te

n
ti

a
l

η(t) = + α1α2

α2−α1

(e−α1t
− e−α2t)

α1 = 0.1, α2 = 1

η(t) = −

α1α2

α2−α1

(e−α1t
− e−α2t)

α1 = 10, α2 = 1

Figure 2.11: The postsynaptic potential response V̄ (t) of postsynaptic neurons with
two exponential time scales in response to a delta function input (i.e., a pulse).
These are the solution to Eq. (2.2.1) with P̄ (t) = δ(0). Note that one is excita-
tory (weighted with +) and the other is inhibitory (weighted with −). In neural field
models, these weights are incorporated into the connectivity w(x,x′) rather than the
effective synapse η(t).

is, when the postsynaptic neurons feel a pulse, the postsynaptic potential instantly
jumps to a new value and then exponentially decays. This is unrealistic, as dendritic
currents and postsynaptic potentials are observed to rise continuously in response to
a single input (Kandel et al. [21] p. 274).

To be able to tune both the rise and fall times of the postsynaptic potential,
another exponential time scale can be incorporated into the synapse,

η(t) =
α1α2

α2 − α1

(
e−α1t − e−α2t

)
. (2.3.4)

In Figure 2.11, the dendritic response to an excitatory and an inhibitory synapse with
two different parameter sets are plotted to show this.

If we take the synapse with two exponential time scales from Eq. (2.3.4) and let
the parameters approach each other in value, α ≡ α1 → α2, then we end up with
what is called the alpha function synapse

η(t) = α2te−αt. (2.3.5)

The alpha function synapse is nice from a modelling point of view because it only has
a single parameter which modifies both the rise and the fall of the dendritic response
curve. As mentioned earlier, this is closer to reality than the single exponential
model. Sometimes however, having both the rise and fall manipulated through a
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Figure 2.12: The postsynaptic potential response V̄ (t) of postsynaptic neurons with
the alpha function synapse in response to a delta function input (i.e., a pulse). These
are the solution to Eq. (2.2.1) with P̄ (t) = δ(0).

single parameter is not enough, and we must revert back to the double exponential
model. This is exactly the case when one wants to parameterize a model to match
general anaesthetic agents such as isoflurane that are known to prolong the rise time
of inhibitory postsynaptic potential much less than the decay time. Having the two
exponential time scales was shown to be necessary by Bojak & Liley [4] to correctly
reproduce EEG spectra in Liley’s model.

Finally we have the spatiotemporal connectivity. This thesis will exclusively use
constant, homogeneous, and isotropic transmission speed throughout. That is, the
delay time will always have the form

s(x,x′) =
∥x− x′∥

c
, (2.3.6)

with transmission speed c, as in the schematic of Figure 2.9. Taking the limit c→ ∞
results in instantaneous communication between any two points, recovering the often
studied neural field without delay. This leaves just the connection weight w(x,x′) to
be specified.

Many simplifying assumptions on w can be used for tractable analysis. We can
use homogeneous connections

w(x,x′) = w(x− x′),

implying that the connection weight depends solely on the relative position of x and
x′. Even more restrictive is if the connections are also isotropic

w(x− x′) = w(∥x− x′∥),



24 2.3. Scalar neural field

0 1

Distance

0

C
o
n

n
e
ct

io
n

st
re

n
g
th

w(‖x‖) = −w0

2π
(1− ‖x‖) e−‖x‖

w0 = +1.0
w0 = +0.5

w0 = −1.0
w0 = −0.5

Figure 2.13: Wizard hat connectivity with varying parameter. Positive connection
strength indicates dominance of excitatory connections, negative indicates dominance
of inhibitory connections. Zero value can either mean there are no connections at that
distance or the excitatory an inhibitory perfectly balance. The single parameter w0

can represent either lateral excitation or lateral inhibition connectivities.

saying that the connection weight only depends on the distance between points x and
x′, not the direction. Analysis presented in the next chapter is done with homogeneous
and isotropic connectivities, but extends in a straightforward way if the isotropy
condition is relaxed, and for specific symmetries of the connectivity.

A useful property for connectivities is to have excitatory and inhibitory domi-
nance differ with length scale, in accordance with with anatomical observations as in
Stepanyants et al. [36]. In two dimensions, the wizard hat connectivity

w(x,x′) = −w0

2π
(1 + ∥x− x′∥) e−∥x−x′∥, (2.3.7)

is very convenient for demonstrating this. The single parameter can qualitatively
model two distinct regimes, lateral inhibition (w0 < 0) and lateral excitation (w0 > 0)
connectivities, demonstrated in Figure 2.13.

One thing to note is that while the single parameter is convenient as a model, the
distance where the dominance switches from excitation to inhibition (or vice versa)
remains one. This is fine in the qualitative sense for a single population model, as the
the system can be scaled around this length, but would be problematic with the use
of multiple populations with different length scales. Adding additional parameters is
one way to proceed, or we can go with something different altogether.

As that something different, we combine two exponentially decaying connectivities
with different strengths, different signs, and different length scales to come up with a
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more robust connectivity

w(x,x′) =
1

2π

(
aee

−∥x−x′∥ − air
2e−r∥x−x′∥

)
. (2.3.8)

The three parameters in this model are the strength of excitatory connections ae,
strength of inhibitory connections ai, and a characteristic length scale r. Varying
these three parameters can produce the lateral excitation and inhibition connectivities
qualitatively similar to the wizard hat, but can also produce purely excitatory and
purely inhibitory connectivities that are non-monotonic.

2.4 Liley’s neural field model

In 2001, Liley et al. proposed a neural population model combining two neural popula-
tions to model the excitatory pyramidal cells and inhibitory pyramidal cells of human
neocortex [26]. One major difference from this model compared to the above is that
it treats the dynamics of postsynaptic potentials separately from the dynamics of the
soma membrane potential.

2.4.1 General form

The main observable of this model is the soma membrane potentials of the two pop-
ulations, and it is these quantities that leads to the synaptic activity. Thus, firing
functions will take, as input, the soma membrane potentials rather than the post-
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synaptic potentials that the scalar model did. The dynamics of the postsynaptic
potentials otherwise follow the same equations. The dynamics of the soma membrane
potentials involve a shifted-inverted mass action coupling to the scaled postsynaptic
potentials, and are taken to be purely local.

A general form of the model, with hk(x, t) being the soma membrane potential of
population k = e, i at position x and time t, and the post synaptic potentials Ijk(x, t)
of neurons between populations j = e, i and k, can be written

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrj
∣∣ Ijk(x, t)

)
Ijk(x, t) = ηjk ∗

(
Kjk ⊗ Sj ◦ hj(x, t) + pjk

)
,

(2.4.1)

using the temporal and spatiotemporal integral operators defined in Section 2.2.2.
Here, the spatiotemporal connectivities and effective synapses have been given sub-
scripts that tell from which population to which population the connection is occur-
ring.

The equation for the soma membrane potentials is interpreted as follows. The
ηk represent a temporal convolution kernel for the dynamics of the soma membrane
potential of population k. The soma membrane potentials want to relax to their
resting membrane potential hrk, but are being forced by the postsynaptic potentials.
This forcing consists of a mass action coupling between the deviation of membrane
potential from its reversal potential, heqjk−hk(x, t), normalized by the relative difference

between resting and reversal potentials,
∣∣heqjk − hrj

∣∣, and the postsynaptic potential
originating from population j, Ijk(x, t).

2.4.2 Specific form of components

To obtain the specific model introduced by Liley et al. [26], we introduce the specific
temporal and spatiotemporal connectivity kernels.

For the soma membrane potentials, the ηk have the same form, but different pa-
rameters for the time scale τk,

ηk(t) =
1

τk
e−t/τk . (2.4.2)

This is the same as the single exponential synapse that was proposed in Eq. (2.3.3),
but when applied here it is more physiologically justified as the soma membrane
potential can rise much faster than that of the postsynaptic potentials.

The synaptic convolution kernels for the postsynaptic potentials all have an alpha
function form, with differing time scales γjk,

ηjk(t) = γ2jkte
−γjkt. (2.4.3)

As discussed, this is the simplest way of obtaining the proper qualitative behaviour
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of the postsynaptic potentials.
The spatiotemporal connectivities are different depending on the source population

(first index). The inhibitory population i, representing the interneurons, has only pure
local connections written as

Kik(x,x
′, t− t′) = exp(1)Γik

Nβ
ik

2π
δ2(x− x′)δ(t− t′), (2.4.4)

with the postsynaptic potential peak amplitude Γik, the number of local intracortical
synapses Nβ

ik from i to k, and δ2(x) ≡ δ(x1)δ(x2) the two dimensional delta function.
The excitatory population e, representing the pyramidal cells, does have spatially

extending connections in addition to its local connections. The spatiotemporal con-
nectivity kernel has a strange form, with the explanation to follow

Kek(x,x
′, t− t′) = Γek

(
Nα

ekΛ
2

3π
K0

(√
2/3Λ∥x− x′∥

)
δ (t− t′ + ∥x− x′∥/v)

+
Nβ

ek

2π
δ2(x− x′)δ(t− t′)

)
exp(1).

(2.4.5)

In this connectivity, we have:

• K0, the modified Bessel function of the second kind,
• Γek, the postsynaptic potential peak amplitude,
• Nα

ek, the number of cortico-cortico synapses from e to k,
• Λ, spatial decay scale for connectivity,
• v, axonal transmission speed, and
• Nβ

ek, the number of local intracortical synapses from e to k.

The modified Bessel function of the second kind is used for two reasons: i) it looks
similar to an exponential, and ii) with all of the other kernels as specified, it permits a
PDE formulation of the model when Ω = R2. Both of these statements are quantified
in Appendix B, with the key being that in this form, the Fourier-Laplace transform
is a rational function, which allows the delayed integral to be written as a damped
wave equation.

With all of the kernels as specified, we can now write Liley’s model in the form in
which it was originally presented

τk
∂

∂t
hk(x, t) = hrk − hk(x, t) +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrj
∣∣ Ijk(x, t)(

∂

∂t
+ γjk

)2

Ijk(x, t) = exp(1)Γjkγjk

[
Nβ

jkSj ◦ hj(x, t) + ϕjk(x, t) + pjk

]
[(

∂

∂t
+ vΛ

)2

− 3

2
v2∇2

]
ϕek(x, t) = Nα

ekv
2Λ2Se ◦ he(x, t)

ϕik(x, t) = 0,
(2.4.6)
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Figure 2.15: A schematic view of Liley’s model, Eq. (2.4.6). This shows the synaptic
coupling between the two populations. Inhibitory synapses are coloured white, and
excitatory coloured black. The excitatory population has direct coupling to other
regions in space, while the inhibitory population has only local. External input to
this model can be excitatory or inhibitory, and can act on either of the excitatory or
inhibitory populations. Used with permission from Frascoli, 2011 [11].

with the firing functions written as our sigmoid

Sk(x) = Smax
k

[
1 + exp

(
−
√
2
x− µk

σk

)]−1

, (2.4.7)

maximal firing rate, threshold, and variance parameters dependent on population.
The schematic view of everything discussed above is found in Figure 2.15, and a

quick summary of the parameters is given in Table 2.2.

2.5 Summary

The state variables in the two different models have physiologically relevant interpre-
tations. As a quick reminder, they are restated here.

u in the scalar neural field is thought of as a locally averaged soma membrane
potential for a single population that can contain both excitatory and inhibitory
synapses. This local average is considered to be at the scale of micro to macrocolumns.

hj in Liley’s model refer to locally averaged membrane potentials of separate pop-
ulations that are purely excitatory (j = e) or inhibitory (j = i) in nature. The Ijk
have the same interpretation as the u in the scalar field, but now may be different
depending on the origin j = e, i and destination k = e, i. Again, the local averages
are considered to be at the scale of micro to macrocolumns.

The macrocolumn scale at which these models are relevant is most comparable to
data acquired by LFP measurements [21]. They can be compared to the more coarse
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Parameter Definition Minimum Maximum Units

hre resting excitatory membrane potential −80 −60 mV

hri resting inhibitory membrane potential −80 −60 mV

τe passive excitatory membrane decay time 5 150 ms

τi passive inhibitory membrane decay time 5 150 ms

heqee excitatory reversal potential −20 10 mV

heqei excitatory reversal potential −20 10 mV

heqie inhibitory reversal potential −90 hrk − 5 mV

heqii inhibitory reversal potential −90 hrk − 5 mV

Γee EPSP peak amplitude 0.1 2.0 mV

Γei EPSP peak amplitude 0.1 2.0 mV

Γie IPSP peak amplitude 0.1 2.0 mV

Γii IPSP peak amplitude 0.1 2.0 mV

γee EPSP characteristic rate constant‡ 100 1000 s−1

γei EPSP characteristic rate constant‡ 100 1000 s−1

γie IPSP characteristic rate constant‡ 10 500 s−1

γii IPSP characteristic rate constant‡ 10 500 s−1

Nα
ee no. of cortico-cortical synapses, target excitatory 2000 5000 –

Nα
ei no. of cortico-cortical synapses, target inhibitory 1000 3000 –

Nβ
ee no. of excitatory intracortical synapses 2000 5000 –

Nβ
ei no. of excitatory intracortical synapses 2000 5000 –

Nβ
ie no. of inhibitory intracortical synapses 100 1000 –

Nβ
ii no. of inhibitory intracortical synapses 100 1000 –

v axonal conduction velocity 100 1000 cm s−1

1/Λ decay scale of cortico-cortical connectivity 1 10 cm

Smax
e maximum excitatory firing rate 50 500 s−1

Smax
i maximum inhibitory firing rate 50 500 s−1

µe excitatory firing threshold −55 −40 mV

µi inhibitory firing threshold −55 −40 mV

σe standard deviation of excitatory firing threshold 2 7 mV

σi standard deviation of inhibitory firing threshold 2 7 mV

pee extracortical synaptic input rate 0 10000 s−1

pei extracortical synaptic input rate 0 10000 s−1

Table 2.2: Meaning and ranges for parameters of Liley’s model.
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spatial data obtained by EEG & MEG by using spatial blurring filters on the domain
of the neural field. Finally, network models of neurons can be spatially and temporally
averaged to get space and time scales comparable to the neural field scales.

On that final note, there are a few cases where neural field models can be formally
derived from the explicit averaging of network models, such as Brunel & Wang [6],
and more recently Laing [24], and Zandt et al. [40]. It is reiterated that the models
studied in this thesis do not have a formal equivalence to underlying network models,
rather they are semi heuristic in nature.
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This chapter will focus on presenting the formulations of dynamical systems that
will be used throughout the remainder of the thesis. There are two viewpoints that
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must be introduced to follow our analysis, that of finite dimensional dynamical sys-
tems (i.e., ODEs), and infinite dimensional (i.e., spatially extended and/or delayed)
systems. Bifurcations are discussed from the finite dimensional viewpoint. For the
infinite dimensional case, the linear stability of perturbations with respect to all possi-
ble Fourier wave modes leads to dispersion relations. On the infinite plane, an infinite
number of wave modes destabilize simultaneously, corresponding to a degree of free-
dom in the orientation of the waves. Restricting this orientational freedom to wave
modes in two directions orthogonal to each other restricts the dimensionality at bi-
furcation, allowing for progress to be made through the use of symmetric bifurcation
theory.

3.1 Finite dimensional dynamical systems

For the purposes of this thesis, a finite dimensional dynamical system is taken to be
a system of ordinary differential equations (ODEs) of the form

u̇ = f(u, α), u(0) = u0,

α̇ = 0,
(3.1.1)

where u(t) ∈ Rn represents the state vector at time t ∈ [0,∞), and α ∈ Rm a vector
of parameters, so f : Rn+m → Rn and is taken to be smooth enough such that any
derivatives used below are well defined. This view, the separation of parameters and
state, is most useful when there are aspects of the system that do not change in
time, or change on a time scale that is much longer than the time scales that we are
interested in studying.

Another way to view such a dynamical system is via the flow, ϕ. A finite dimen-
sional dynamical system on RN is a continuously differentiable function ϕ : RN ×R →
RN such that ϕ(X, t) satisfies

1. ϕ(X, 0) : RN → RN is the identity function ϕ(X, 0) = X
2. The composition ϕ(X, t) ◦ ϕ(X, s) = ϕ(X, t+ s) holds for each t, s ∈ R

The connection to the ODEs in Eq. (3.1.1) is that the flow satisfies the equation, i.e.,
∂tϕ(u, t) = f(ϕ(u, t)). With this equivalence, 1 is satisfied by the initial condition,
and 2 is satisfied if f satisfies the existence and uniqueness criteria for ODEs, thus
the definition holds with N = n + m and X = [u, α]T . The reason for including
this definition is because the discussion of aspects of periodic solutions follow more
naturally from the viewpoint of a flow. Specifically, both the computation and stability
analysis of periodic solutions make use of the differential of the flow with respect to
the initial state.
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3.1.1 Equilibrium solutions

An equilibrium is a solution to Eq. (3.1.1) that does not change in time. That is, it
satisfies

f(u, α) = 0 (3.1.2)

Without loss of generality, we can assume a solution to eq. (3.1.2) to be at u = 0,
α = 0. We Taylor expand the vector function f(u, 0) as

f (u, 0) = Au+
1

2
B (u, u) +

1

6
C (u, u, u) +O

(
||u||4

)
, (3.1.3)

with elements of the different order terms

Aij = ∂uj
fi, (3.1.4a)

Bi (u, v) =
∑
j,k

(
∂uj

∂uk
fi
)
ujvk, (3.1.4b)

Ci (u, v, w) =
∑
j,k,l

(
∂uj

∂uk
∂ul
fi
)
ujvkwl, (3.1.4c)

for indices i, j, k = 1 . . . n. Partial differentiation is indicated by ∂, with each evaluated
at the zero state, i.e.,

∂uj
∂uk

fi =
∂2fi

∂uj∂uk

∣∣∣∣
u,α=0

.

As written, A is thus a matrix, while B and C are vectors.
We can then analyze the linear stability of the equilibrium by looking at the

eigenvalues of the Jacobian A. In particular, we can define three subspaces from the
eigenvalue equation (λI − A) v = 0:

• Stable eigenspace S: The subspace spanned by the generalized eigenvectors
corresponding to the eigenvalues λ with Reλ < 0.

• Center eigenspace C: The subspace spanned by the generalized eigenvectors
corresponding to the eigenvalues λ with Reλ = 0.

• Unstable eigenspace U : The subspace spanned by the generalized eigenvectors
corresponding to the eigenvalues λ with Reλ > 0.

Depending on the dimensionality of these subspaces, we describe the equilibrium in
one of three ways: An equilibrium solution is called stable if dimS = dimA. It is
called unstable if dimU > 0, and it is called neutrally stable if dimS+dim C = dimA.

The nonlinear system (3.1.2) has invariant manifolds that correspond to each of
the linear subspaces, and the subspaces are locally tangent to these manifolds at the
equilibrium. An invariant manifold is a space that is invariant under the flow ϕ.
That is to say, points starting within an invariant manifold will remain within it for
all time.

Examples of invariant manifolds are equilibria, periodic orbits, and the stable,
unstable and center manifolds of these solutions. Stable manifolds of an equilibrium
solution u can be defined as ω = { u0 | limt→∞ ϕ(u0, t) = u }, and the unstable mani-
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fold as α = { u0 | limt→∞ ϕ(u0,−t) = u }. Further discussion of invariant manifolds is
deferred to Wiggins [14].

An equilibrium is said to be hyperbolic if the linearization only contains stable
and unstable subspaces, i.e., dim C = 0. An equilibrium that lacks hyperbolicity is
called a local bifurcation point. At local bifurcation points, new solutions can emerge,
with their properties being determined by the nature of the eigenvalue(s) causing
the bifurcation, and by the so-called normal form coefficients. The dynamics near a
bifurcation point can be understood by transforming the equations to their normal
form on the center manifold. This normal form transformation involves transformation
to coordinates that approximately cover the center manifold. It consists of near-
identity transformations that eliminate terms in the Taylor expanded vector field
(Eq. (3.1.3)) order by order.

The codimension of an equilibrium bifurcation is the number of conditions (in
addition to Eq. (3.1.2)) that must be met for the bifurcation to occur. These are
conditions on either the eigenvalues or the normal form coefficients. The codimen-
sion is also the number of parameters that need to be varied (in general) to see the
bifurcation. For example, in a model with many parameters, it is very unlikely to see
an equilibrium at a Hopf bifurcation (codimension 1) for a fixed parameter set, but
adding a single degree of freedom that can be varied can allow us to satisfy both the
equilibrium equation and the λc = iωc condition if f (and A) will permit this.

The next subsection shows how this can be done in a procedural manner for a
Hopf bifurcation, which has a center manifold corresponding to a pair of complex
conjugate eigenvectors with the eigenvalues λc = ±iωc. This particular bifurcation is
chosen because it plays a role in the generation of temporal oscillations which come
up frequently in neural models.

Further discussion of center manifold transformations in general is left to Wig-
gins [14] and Kuznetsov [11]. Also, Kuznetsov [12] provides succinct expressions for
computing normal form coefficients for all equilibrium bifurcations up to codimension
2. It is the value of the coefficients that we are interested in, so we look at methods
like Kuznetsov [12] more closely.

3.1.2 Hopf bifurcation

This subsection follows the idea presented in Kuznetsov [12], relying on the fact that
we already know what the normal form equation should look like, and just want to
compute the normal form coefficients.

In general, we write the restriction to the center manifold as

u = H(w), H : Rnc → Rn, (3.1.5)

and the (known) restricted equation as

ẇ = G(w), G : Rnc → Rnc , (3.1.6)

where G is a polynomial expansion, the coefficients of which are the normal form
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coefficients, and nc is the dimension of the center manifold (nc = 2 for the Hopf
bifurcation).

If we substitute Eqs. (3.1.5) and (3.1.6) into Eq. (3.1.1), we obtain the homological
equation

Hw(w)G(w) = f(H(w)), (3.1.7)

Expanding H in terms of w,

H(w) =
∑
ν≥1

1

ν!
hνw

ν , (3.1.8)

substituting this into the homological equation, and comparing terms order by order
gives systems of linear equations to be solved for the hν . These linear systems are
in fact singular, so applying Fredholm’s alternative is required to ensure solvability
of the systems. Fredholm’s alternative states that for L a singular matrix, Lu = b
will have a solution iff ⟨p, b⟩ = 0, for all p in the null space of the adjoint matrix,
L̄Tp = 0. Applying this to each order equation will give solvability conditions on any
unknown coefficients that are present in G(w). Values for these coefficients can be
used to determine the criticality and stability of branching solutions.

For a stable equilibrium becoming unstable through the increase of a parameter
β through bifurcation point βc, the criticality of branching solutions refers to which
values of β the branching solutions exist in the neighbourhood of the bifurcation. A
subcritical branch exists for β < βc, and a supercritical branch exists for β > βc.

At a Hopf bifurcation with critical eigenvalues λ = ±iωc, we define the left and
right (complex) eigenvectors of the Jacobian

Aq = iωcq, ATp = iωcp (3.1.9)

and normalize them according to

⟨p, q⟩ ≡ p̄T q = 1, (3.1.10)

noting the standard inner product for complex vector arguments.
The normal form of the Hopf bifurcation (in complex coordinate w) comes from

Hopf’s 1942 paper [8, 9]

G(w) = iωcw + l1w |w|2 +O
(
|w|4

)
, w ∈ C1. (3.1.11)

Applying Fredholm’s alternative to each order solution of the homological equation
will eventually show that the normal form coefficient l1 is

l1 =
1

2
Re⟨p, C(q, q, q̄) +B(q̄(2iωcIn − A)−1B(q, q))− 2B(q, AINVB(q, q̄)⟩, (3.1.12)

with In the n× n identity, and the notation AINV b representing the solution x to the
nonsingular system [

A q

p̄T 0

][
x

s

]
=

[
b

0

]
(3.1.13)
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Figure 3.1: Unfolding (branching) diagrams for the Hopf bifurcation. An equilibrium
undergoing a Hopf bifurcation will produce a finite amplitude limit cycle (periodic or-
bit). The sub/super-criticality and stability of the emerging limit cycle is determined
by the parameter dependent unfolding in Eq. (3.1.14).

Furthermore, if l1 ̸= 0 and Eq. (3.1.1) depends smoothly on a parameter α1, it
can be shown that the cubic truncation of the restriction to the parameter-dependent
center manifold is topologically equivalent to the normal form

ẇ = (β + iωc)w + l1w |w|2 . (3.1.14)

It is this parameter dependent normal form that allows us to determine the branching
diagram of the Hopf bifurcation.

The nature of the Hopf bifurcation depends on the value of l1. For l1 < 0, the
bifurcation is called subcritical, and decreasing β through zero takes an equilibrium
from unstable to stable, and produces an unstable limit cycle. For l1 > 0, the Hopf
bifurcation is called supercritical, and increasing β through zero takes an equilibrium
from stable to unstable, and produces a branch of stable limit cycles. This is best
demonstrated visually, as in Figure 3.1.

The method described within this section can be applied to bifurcations of any
codimension, but the analysis quickly gets complicated as nc increases. As the codi-
mension increases, the number of normal form coefficients also increases. This adds
to the number of possibilities for the number of unfolding diagrams. Also with in-
creasing codimension, comes increasing complexity of the formulae for computing the
coefficients. The computation coefficients for all generic equilibria bifurcations with a
codimension less than 3 is presently well established, and we can look to Kuznetsov [12]
for useful expressions to evaluate their numerical values.

3.1.3 Periodic solutions

Periodic solutions to Eq. (3.1.1) can be expressed in terms of the flow

u− ϕ(u, T, α) = 0, (3.1.15)
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where T > 0 is the minimal time to satisfy this equation, and we have made the
parameter dependence explicit, i.e., X = [uT , α]T ∈ Rn+m has been expanded in the
flow’s arguments. As there are very few systems for which solutions to this equation
can be determined analytically, numerical methods are key for finding solutions. The
method we make use of treats this as a problem in n + 1 unknowns, by including T
in the state vector, and is described in more detail in Section 3.4.4. To summarize
here, one can integrate the system of ODEs for a time T , and perform a Newton
update on the n+1 dimensional system based on the residual of the left hand side of
Eq. (3.1.15).

However, there is a problem with doing this, in that there are only n equations in
the n+ 1 unknowns. This leads to an infinite number of solutions, which correspond
to the starting point that can be anywhere along the periodic orbit. To handle this,
an extra condition must be introduced to effectively fix the phase of the solution. In
general, this can be written as

P (u, t) = 0, (3.1.16)

where P can fix a Poincaré plane of intersection, or represent some integral constraint
over the time-course of the periodic solution [11]. If we are dealing with a large system
of equations, then in practice it is more convenient to simply remove the direction
of the flow from the Newton update step. We will elaborate on this approach in the
computational section.

What can be done once a periodic solution has been found? Difference equa-
tions (i.e., the map uk+1 = ϕ(uk, t, α)) can be linearized and split up into different
eigenspaces similar to what was done with ODEs at equilibrium in Eq. (3.1.3). The
main modification that needs to be made for maps is with the linear stability, looking
at ∂uϕ(u, T, α). Upon evaluation at an exact periodic solution u, ∂uϕ(u, T, α) is called
the monodromy matrix. Linear stability analysis of a periodic solution u corresponds
to the eigenvalue problem

[∂uϕ(u, T, α)] v = µv. (3.1.17)

The monodromy matrix will always have one eigenvalue µ = 1, and this corresponds
to perturbations along the periodic solution. Stable, center, and unstable eigenspaces
are now determined by eigenvalues µ with |µ| < 1, |µ| = 1, and |µ| > 1 respectively.
µ are called the Floquet multipliers, as Eq. (3.1.17) represents a linear system with
time-periodic coefficients, analyzed originally by Floquet [3].

Generic bifurcations of the periodic cycle come in three flavours: µ = 1, µ = −1,
and µ1,2 = e±iθ0 . The listed bifurcations are called fold, flip and torus, respectively.
The fold bifurcation involves the spontaneous generation of a stable and unstable
periodic solution. The flip is also known as period doubling, and involves the desta-
bilization of an existing periodic orbit, and the generation of a new periodic solution
with a different period. The torus bifurcation involves the destabilization of an exist-
ing periodic orbit, and the generation of either i) a new periodic orbit or ii) a dense
torus of trajectories.
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3.2 Infinite dimensional systems

While the previous section was dealing with a finite number of state variables, this
section extends some of those ideas to infinite dimensional systems. Infinite dimen-
sional systems arise predominantly in two ways: i) by the addition of time delays,
or ii) by extending the state variables to depend on continuous variables other than
time. We will use both views of the infinite dimensionality in this thesis. The scalar
neural field uses both i and ii. The integral formulation of Liley’s model uses i and ii,
but its formulation as the PDE system requires only ii.

The most general way we write an evolution equation for a smooth, autonomous,
spatially extended, parameter dependent system is

ut = f(u, ut, α). (3.2.1)

This differs from the finite dimensional case without delays, as we now consider u(x, t)
to have n components defined for x ∈ Rd and t ∈ [0,∞), ut = {u(x, τ) : τ < t} is
the trajectory of the past solution, α the set of m parameters, and a functional
operator f : Rn × C1(Rn) × Rm → Rn. The functional operator can incorporate
partial derivatives of the spatial coordinates, and integrals over the spatial or (past)
time domains.

3.2.1 Equilibrium solutions

The idea of an equilibrium solution remains the same as in the finite dimensional case,
it is a solution that does not change in time.

Generally, equilibrium solutions can depend on space. In terms of our general
definition for infinite dimensional systems, we have

f(u, u, α) = 0 (3.2.2)

for u(x). It is important to note that the time history is evaluated at the equilibrium
solution as well. A spatially homogeneous equilibrium, or SHE, is an equilibrium that
in addition to satisfying Eq. (3.2.2), does not vary with space as well, satisfying

∇xu = 0.

These types of equilibria are very important in the study of infinite dimensional
systems, as they often represent resting or ground state solutions that the system
will tend to in some parameter regimes. These solutions are easier to find numerically
than space dependent equilibria. Through continuation methods parameters can be
varied until a bifurcation of the SHE occurs, and a new type of solution branch, can
then be picked up and continued as well. This process allows us to study the dynamics
of the system, gradually building up the complexity of the solutions.

For spatially extended systems, the equation for SHE reduces to a finite dimen-
sional one similar to Eq. (3.1.2). Stability with respect to spatially homogeneous
modes can be obtained by studying the linearization of Eq. (3.2.1) about the SHE,
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subject to spatially homogeneous perturbations. For non-delayed systems, this will
also be a finite dimensional (i.e., polynomial) problem, but in general when space-
dependent delays are present, transcendental equations (i.e., involving irreducible frac-
tional exponents), may arise.

SHE are also important for the study of spatially localized solutions and travelling
waves. These solutions can be studied from the view of homoclinic and heteroclinic
connections, respectively. A homoclinic orbit is a solution that connects the unstable
manifold of an equilibrium to the stable manifold of the same equilibrium. A hetero-
clinic orbit is a solution that connects the unstable manifold of an equilibrium to the
stable manifold of a different equilibrium. Localized solutions connect a SHE to itself
in a one dimensional spatial domain (homoclinic in space), and wave fronts connect
one SHE to another (heteroclinic in space), also in a one dimensional spatial domain.
We do not look at these types of solutions in this thesis, as they have been studied
quite extensively in neural field models [1].

3.2.2 Linear stability

To linearize a spatially extended system about a general solution u0(x, t), we substi-
tute

u(x, t) = u0(x, t) + ϵu1(x, t)

into Eq. (3.2.1) and look at the terms proportional to ϵ. This gives

∂u1
∂t

= fu(u0, u
t
0, α)u1.

The linear stability of infinite dimensional systems can be investigated by looking
at perturbations of the form

u1(x, t) = φ(x)eλt,

with λ ∈ C. The general case of stability is beyond the scope of this thesis, but rather
we will look at the linear stability of SHE with respect to spatial Fourier modes with
specific wave vectors k ∈ R2. This is written as

u1(x, t) = q(k)eik·xeλt (3.2.3)

Substituting this into Eq. (3.2.1) will result in a system of equations that relates λ
and k, the dispersion relation. Looking at perturbations with k = 0 gives linearized
dynamics of the spatially homogeneous modes.

Dispersion relations

After the substitution of Eq. (3.2.3), a dispersion relations can be obtained, written
to satisfy some equation of the form

F (λ,k, α) = 0.
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For PDEs, and systems without delays, the dispersion relation can be reduced to
a scalar equation which is polynomial in λ. Systems that include delays can be
much more unpredictable in the form of F , but F can generally be reduced to a
scalar equation with nonlinear dependence on λ. For example, the double exponential
connectivities used in the scalar neural field result in a dispersion relation with terms
that have a rational exponents.

For systems that are spatially homogeneous and isotropic, the dispersion relation
will depend only on the magnitude k = ∥k∥ and not the direction of the wavevector,

F (λ, k, α) = 0. (3.2.4)

The following analysis presented proceeds with this case. We think of the set of
solutions to this equation as

Λ = { λ | F (λ, k, α) = 0 } . (3.2.5)

There will be a certain (generally unknown) number of continuous branches that
satisfy Eq. (3.2.4), and can thus be locally parameterized by k.

ΛCONT =
{
λ
∣∣∣ F (λ(k), k, α) = 0, λ(k) = lim

ϵ→0
λ(k ± ϵ)

}
. (3.2.6)

In addition to this, there also exists the possibility of discrete solutions to the disper-
sion relation where λ can not be parameterized with k, and we denote this

ΛDISC = Λ \ ΛCONT . (3.2.7)

3.2.3 Bifurcation from dispersion relation

Two specific bifurcations that arise from the destabilization of a continuous dispersion
relation ΛCONT are the Turing and the dynamic Turing bifurcations. The first occurs
when a real valued branch of the continuous dispersion relation crosses the Reλ = 0
threshold, and the second for a complex valued branch crossing this threshold, both
while changing some parameter, say γ. Similar to the fold and the Hopf bifurcations
of the finite dimensional system, the Turing bifurcation has the potential to produce
steady state solutions, and the dynamic Turing to produce temporally oscillating
solutions. But now, the spatial scale of these bifurcating solutions is dependent on
the wave vector causing the destabilization, kc. This is shown for the dynamic Turing
bifurcation in Figure 3.2.

If space is one dimensional, R, then there are at most 2 k1 values that satisfy
k = ∥k∥ = |k1|. In spatial dimensions greater than one, we have k = ∥k∥ =

√
k21 + k22

(for example with Euclidean norm in R2) which has a degree of freedom giving rise
to an infinite correspondence between k and its components kj.

We do not have the tools to address bifurcations that have infinite dimension,
however we can apply ideas from symmetry to help with this problem.
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Figure 3.2: What happens in a dynamic Turing bifurcation. As a parameter is
increased through γc, a portion of a complex conjugate branch becomes unstable,
with wave number kc and angular frequency ωc leading the way.

3.3 Bifurcations with symmetry

One way that we can circumvent the infinite dimensionality of bifurcations that arise
from the dispersion relations in two dimensional space is to look for solutions that
are symmetric with respect to subgroups of the Euclidean symmetry. Euclidean sym-
metries are an important group of symmetries that are present in models that are
homogeneous and isotropic, such as specific instances of the scalar neural field and
Liley’s model described in Chapter 2. This section will lay out the formulation of bi-
furcation problems in the presence of symmetry, and then look at a specific symmetric
bifurcation, the D4 ⋉ T 2 symmetric Hopf bifurcation.

3.3.1 General problem

For finite dimensional dynamical systems, it is intuitive that low codimension bifur-
cations arise more commonly than higher codimension. For example, if we think
of a bifurcation in which n complex conjugate eigenvalues cross the imaginary axis
together, this would involve the vector field of Eq. (3.1.2) to satisfy n additional
constraints simultaneously, an unlikely scenario in the general case.

However, when symmetries are present, in either finite or infinite dimensional
systems, we often find the multiplicity of certain eigenvalues to increase. Fortunately,
while symmetries do generally increase the number of bifurcating modes, these modes
are confined to moving together, and so do not increase the codimension of a given
bifurcation. For instance, if one mode satisfies the bifurcation condition, then all
of the related symmetric modes must satisfy the condition as well. The symmetries
also play a role in restricting the terms that are possible in the normal form on the
centre manifold. The result is that symmetric bifurcations will have more complicated
normal forms than non-symmetric ones, but the situation is more manageable than
when dealing with higher codimension bifurcations.

The useful formulation of symmetric bifurcations presented here is thanks to Gol-
ubitsky & Stewart [5]. For this view, we consider an evolution equation written as

∂tv = f(v) (3.3.1)
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for v ∈ V and f : V → V . This can be seen to be the finite dimensional dynamical
system Eq. (3.1.1), or the infinite dimensional one, Eq. (3.2.1), depending on the
interpretation of V .

We consider the case when f commutes with the action of some Lie group Γ, i.e.,

f(γv) = γf(v), γ ∈ Γ,

For bifurcations with symmetry Γ, a bifurcating branch will have less symmetry than
Γ. This is referred to as spontaneous symmetry breaking. If Γ acts on V , then

Σv = { σ ∈ Γ | σv = v }

is called the isotropy subgroup. The fixed-point subspace of a subgroup Σ ⊂ Γ is

V Σ = { v ∈ V | σv = v, ∀σ ∈ Σ } ,

and it consists of all points in V whose symmetries include Σ.
The most important thing to gather from these definitions is that if f : V → V

commutes with Γ, then f : V Σ → V Σ. That is, solutions that have the symmetry of
an isotropy subgroup of Γ remain in their isotropy subgroup under the application
of f . This is the key aspect that allows one to formulate normal form equations for
symmetric systems undergoing bifurcation.

We do not work with symmetric bifurcation theory directly in this thesis. Instead,
we rely on normal forms that have already been formulated and studied in the presence
of symmetry, and look at how we can compute the normal form coefficients from our
neural field models.

3.3.2 D4 ⋉ T 2 Hopf bifurcation

The symmetric bifurcation that this thesis revolves around is the Hopf bifurcation on
a periodic square, and it arises as follows.

Solutions to spatially extended equations that are homogeneous and isotropic on
R2 are equivariant under the group of continuous translations T 2 and continuous
rotations and reflections O(2). Combined, these make the Euclidean symmetry group
E(2) = O(2)⋉T 2. The dispersion relations with this symmetry group are continuous
functions of the wavenumber k, and destabilization involves the loss of stability of
an infinite number of wave modes. As this is impractical from the viewpoint of
bifurcation analysis, the Euclidean symmetry can be restricted to sub-symmetries.
There are many ways to do this, one of which is to restrict to tiling patterns of the
plane, the symmetries Dn ⋉ T 2, with Dn being the dihedral group with n rotations
and n reflections. D2 ⋉ T 2 refers to lattices with a rhomboid symmetry (there are a
few of them, such as the rectangles with different side lengths), D4⋉T 2 a lattice with
square symmetry, and D6 ⋉ T 2 a lattice with hexagonal symmetry. The main reason
we would decompose into these specific symmetries, is to preserve the translational
part of the Euclidean symmetry which will allow for travelling wave modes.

When a complex branch of the continuous dispersion relation destabilizes as in
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Figure 3.2, and we restrict our view to the D4 ⋉ T 2 symmetric modes, we effectively
restrict our view to the spatial domain [0, Lc]

2 with Lc = 2π/kc, and the temporal
domain [0, Tc] with Tc = 2π/ωc. The multiplicity of the complex conjugate pair
causing the destabilization will be 4, corresponding to the complex valued eigenmodes

ϕ1 = ei(ωct+kcx1),

ϕ2 = ei(ωct−kcx1),

ϕ3 = ei(ωct+kcx2),

ϕ4 = ei(ωct−kcx2),

(3.3.2)

so this means that the codimension of the bifurcation will still be 1, but the dimension
of the center eigenspace will be 8.

Normal form & unfolding

The normal form for the D4 ⋉ T 2 Hopf bifurcation was originally studied by Silber
& Knobloch [13]. Their analysis determined that the cubic truncation of the normal
form can be written in terms of four complex-valued amplitudes Aj ∈ C,

Ȧ1 = (β + iωc)A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā2A3A4

Ȧ2 = (β + iωc)A2 + A2

[
a1|A1|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā1A3A4

Ȧ3 = (β + iωc)A3 + A3

[
a1|A4|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā4A1A2

Ȧ4 = (β + iωc)A4 + A4

[
a1|A3|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā3A1A2,

(3.3.3)

with complex valued normal form coefficients ak ∈ C. Through application of the
Equivariant Hopf Theorem [4], it was determined that there are five periodic solutions
that are guaranteed to emerge from this bifurcation. The five solutions are called:
standing roll (SR), travelling roll (TR), travelling square (TS), standing square (SS),
and alternating roll (AR). These five solutions are shown in Figures 3.3-3.5, and the
ways in which they are related to the amplitudes Aj are given in Table 3.1. Also in the
table are the amplitudes of each solution in terms of the normal form coefficients and
the unfolding parameter. Increasing the unfolding parameter through zero causes the
SHE to go from stable to unstable, so the criticality of solutions is given by the sign
of the denominator. For example, Re(a1 + 2a2 + 2a3 − a4) > 0 implies a real valued
amplitude for AR when β < 0, thus the AR branch would bifurcate subcritically.
With known normal form coefficients, this can be applied to each of the five branches,
giving the complete picture of criticality.

Considering all of the criticality conditions in Table 3.1 and all of the stability
results in [13] together, Silber & Knobloch determine that there are 34 qualitatively
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Figure 3.3: Time dependent snapshots of travelling modes that bifurcate from the
D4⋉T 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2. Top: Travelling roll
(TR). Bottom: Travelling square (TS).
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Figure 3.4: Time dependent snapshots of standing modes that bifurcate from the
D4 ⋉ T 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2. Top: Standing roll
(SR). Bottom: Standing square (SS).

Solution Amplitudes Criticality condition

TR A1 ̸= 0, A2 = A3 = A4 = 0 |A1|2 = −β/Re(a2)
SR A1 = A2 ̸= 0, A3 = A4 = 0 |A1|2 = −β/Re(a1 + 2a2)

TS A1 = A3 ̸= 0, A2 = A4 = 0 |A1|2 = −β/Re(a2 + a3)

SS A1 = A2 = A3 = A4 ̸= 0 |A1|2 = −β/Re(a1 + 2a2 + 2a3 + a4)

AR A1 = A2 = −iA3 = −iA4 |A1|2 = −β/Re(a1 + 2a2 + 2a3 − a4)

Table 3.1: The five guaranteed solutions emerging from the D4⋉T 2 symmetric Hopf
bifurcation. Given are the nontrivial amplitudes that contribute to the solution, and
the amplitude condition that gives criticality.
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Figure 3.5: Time dependent snapshots of the alternating roll (AR) solution that
bifurcates from the D4 ⋉ T 2 symmetric Hopf bifurcation. Spatial domain is [0, 2Lc]

2.

different regions for the unfolding diagrams for Re a4 > 0. For Re a4 < 0, additional
unfoldings can be obtained simply by swapping the branches of SS and AR. All of
these unfolding possibilities are shown in Figure 3.6, which is reproduced from [13].

Later in the thesis, we will see the stable travelling rolls and alternating rolls from
direct numerical simulation of the scalar neural field, and we will explicitly compute
a branch of standing square waves in Liley’s model.

3.4 Continuation

Continuation methods form the bulk of the numerical computation for almost all
things discussed above. This is because:

1. The main idea underlying continuation is simple,
2. The simple idea is extensible, and
3. Quadratic convergence of Newton’s method makes for fast algorithms.

Continuation aims to find one parameter families of solutions to underdetermined
equations of the form

g(U, β) = 0, (3.4.1)

where what g, U , and β represent change depending on context, but β ∈ R is always
consistent. For example, g(U, β) can be the equilibria described by Eq. (3.1.2), or the
periodic solutions described by Eq. (3.1.15). The main continuation problems needed
for this thesis are described in the upcoming Applied to Sections 3.4.2–3.4.6.

If a solution is known for a particular value of β, continuation can be applied to find
how that solution changes with β. Sometimes, a continuous family of solutions may
not be monotonic with respect to β, which will cause certain continuation methods to
fail. When this happens, it often suffices to change to a better continuation method.
These ideas seem to have originated with Keller [10].
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Figure 3.6: Unfolding diagrams of the D4 ⋉ T 2 symmetric Hopf bifurcation for 34
qualitatively different normal form coefficient regions. These are only for Re a4 > 0,
and more diagrams can be obtained for Re a4 < 0 simply by switching the AR and
SS branches. Reproduced with permission from Silber & Knobloch, 1991 [13].
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3.4.1 General methods

There are two forms of continuation methods we make use of:

1. Parameter continuation, and
2. Pseudoarclength continuation,

for finding continuous, one parameter families of solutions.

Parameter continuation

The simplest method of continuation is called parameter continuation. Parameter
continuation involves changing the parameter β by an amount ∆β, and using the
known solution at β as the initial guess to a Newton iteration at the new parameter
value β +∆β. Visually, this is in Figure 3.7, and algorithmically this is expressed as

1. Assign known solution of g(U, β) = 0 to U0 = U .
2. Solve the linear system

∂Ug(Uk, β +∆β)∆U = −g(Uk, β +∆β).

3. Update solution
Uk+1 = Uk +∆U.

4. Increase k, repeat from 2 until some error tolerance reached.

The repetition of points 2-4 is just a simple Newton iteration.
The main drawback to parameter continuation is that it assumes U is a function

of β, i.e., U(β). This is not generally true, as U can have multiple solutions for a
given parameter value. In the neighbourhood of a fold bifurcation, for example, u
and β are related as in the right panel of Figure 3.7, which causes the algorithm to
break in an unpredictable way. By unpredictable, we simply mean that a sequence
{Uk} will follow the global dynamics of the map given in point 3. The next algorithm
fixes this situation.

Pseudoarclength continuation

Pseudoarclength continuation takes its initial guess to be tangential to the slope of g
at the current solution. It then performs a Newton iteration in directions orthogonal
to the direction of that initial guess. This change in initial guess can be worked into
parameter continuation as well, so the big difference in pseudoarclength continuation
is in the orthogonal update. This is what allows the method to get around the folds
that parameter continuation has problems with, seen in Figure 3.8. It is natural
to split the vectors tangent to g into their state components and their parameter
component, i.e., t = (t(U)T , t(β))T . The algorithm for pseudoarclength continuation is

1. Start with known solutions (U0, β0) and (U1, β1), with tangent vector t0 between
them, and a step size ∆s.
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Figure 3.7: What is happening in parameter continuation. Left : The method can
work when there is a solution to be found at the new parameter value β+∆β. Right :
Near fold points of g, parameter continuation is doomed to fail because there is no
solution to find.

2. Compute tangent vector t1 from the equation[
∂Ug(U1, β1) ∂βg(U1, β1)

t
(U)T
0 t

(β)
0

][
t
(U)
1

t
(β)
1

]
=

[
0

1

]
.

3. Form predictor as

Û = Uk +
∆s

∥t0∥
t
(U)
0 , β̂ = βk +

∆s

∥t0∥
t
(β)
0 ,

4. Assign U2 = Û , β2 = β̂, i.e., k = 2
5. Solve the system[

∂Ug(Uk, βk) ∂βg(Uk, βk)

t
(U)T
1 t

(β)
1

][
∆U

∆β

]
=

[
−g(Uk, βk)

0

]
.

6. Update the solution

Uk+1 = Uk +∆U, βk+1 = βk +∆β

7. Increase k, repeat from 5 until some error tolerance reached.

The repetition of points 5-7 is again just a Newton iteration, but with the initial set
up, it now updates not only the state but the continuation parameter as well.

The particular method described in the algorithm is known as Keller’s method [10].
There are a few variants of pseudoarclength continuation that will have very slightly
different convergence properties, described in Govaerts [6], but this method was suffi-
cient for any computations required in this thesis. Stressing again that this method is
sufficient to allow for continuation around folds, we direct your attention to the right
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Figure 3.8: What is happening in pseudoarclength continuation. Left : For situations
where parameter continuation will work, pseudoarclength works as well. The initial
guess (β̂, Û) is typically closer to the actual solution which is beneficial for starting
the Newton iteration both here and in parameter continuation. Right : When param-
eter continuation breaks down at a fold, pseudoarclength can succeed, provided the
predicted step is not too large.

panel of Figure 3.8.

3.4.2 Applied to equilibria

For a finite dimensional dynamical system, the continuation of an equilibrium is as
straightforward as it gets. It can be achieved simply by setting the general function
g equal to the vector field of the system, f , the state U = u, and the continuation
parameter β = α1, a single parameter out of the ODE’s parameter set. That is, the
elements needed for continuation are

g(U, β) = f(u, α),

∂Ug(U, β) = A(u, α),

∂βg(U, β) = ∂α1f(u, α).

(3.4.2)

Various software packages are available to perform this computation for parameter
dependent vector fields. For instance, Matcont [7] written in Matlab, or Auto-07p
[2]. These packages however, are written with ODEs in mind, and work very well
for systems with few degrees of freedom. When it comes to large discretized PDE
problems, however, the algorithms used scale poorly in dimension, and thus can not
be applied in a timely manner.
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3.4.3 Applied to bifurcations of equilibria

For continuation of a bifurcation of an equilibrium, we think of the problem like this:
Continuation is applied to the equilibrium such that the condition causing the bifur-
cation holds. As one parameter is needed for the continuation of the equilibrium, (at
least) another degree of freedom must be considered so that the bifurcation condition
can be met. For continuation of codimension n bifurcations, we effectively think of
this as a n + 1 dimensional continuation – 1 parameter for the equilibrium, and n
parameters to ensure it satisfies the bifurcation conditions. In the context of the pre-
sented continuation algorithms, we can move n parameters into our state U so that β
remains one dimensional. How to set up the nonsingular systems that will allow for
the continuation of the codimension 1 fold bifurcation of equilibria is now presented.

Continuation of fold

At a non-degenerate fold bifurcation, also called a quadratic turning point, the Jaco-
bian, A, at our equilibrium has a nullspace of dimension 1. We can thus define left
and right nullvectors p ̸= 0 and q ̸= 0 according to

Aq = 0, ATp = 0.

A minimally augmented system can be defined for g,

g(u, α) =

[
f(u, α)

h(u, α)

]
=

[
0

0

]

where h(u, α) ∈ R is part of the solution to[
A q

pT 0

][
q

h

]
=

[
0

1

]
.

What is more important to know about h, is that its derivatives with respect to an
arbitrary state vector or parameter z are of the form

hz = −pT (∂zA) q.

It can then be shown that the matrix[
A ∂α1f

−pT (∂uA) q −pT (∂α1A) q

]

is nonsingular, with proof of this given in Govaerts [6], Chapter 4.1.2.
Finally, we write the elements needed for continuation of a fold bifurcation by

adding one parameter into the state U = (uT , α1)
T and having a free parameter for
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the continuation β = α2,

g(U, β) =

[
f(u, α)

h

]

∂Ug(U, β) =

[
A(u, α) ∂α1f(u, α)

−pT
(
∂uA(u, α)

)
q −pT

(
∂α1A(u, α)

)
q

]

∂βg(U, β) =

[
∂α2f(u, α)

−pT
(
∂α2A(u, α)

)
q

]
.

(3.4.3)

Further, the pseudoarclength algorithm can be tailored to this specific case, in-
cluding scale parameters for the state and both parameters, θx, θα1 and θα2 , trying to
stabilize the numerics further. However, this level of optimization/stability was not
needed for computations done in this thesis.

3.4.4 Applied to periodic orbits

For continuation of a finite dimensional periodic solution, the temporal period of the
solution must be considered in the state variables. Using the components that were
defined in Section 3.1.3, we identify the state vector U = (uT , T )T , and a continuation
parameter β = α1. The components for continuation are then written

g(U, β) =

[
u− ϕ(u, T, α)

P (u, T )

]

∂Ug(U, β) =

[
I − ∂uϕ(u, T, α) −∂tϕ(u, T, α)

∂uP ∂TP

]

∂βg(U, β) =

[
−∂α1ϕ(u, T, α)

0

]
.

(3.4.4)

Using these components to continue a periodic solution, however, can be tricky,
and is a generally fragile process. As written, the equations suggest that P (u, T )
is independent of the parameters. This is not generally true, and continuation can
possibly take us towards solutions that will never satisfy P = 0, causing a breakdown
of the algorithm. This can be alleviated by monitoring the transversality of the orbit
on P = 0, and reorthogonalizing P with the new periodic solutions as continuation
steps are made.

Matcont and Auto-07p favour integral constraints over the time course of the pe-
riod rather than this Poincaré plane. The reason being that it avoids the problem
discussed in the above paragraph. This does however become computationally pro-
hibitive when dealing with large systems, so we prefer the more easily implemented
Poincaré plane while considering the noted potential problems.
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3.4.5 Applied to continuous dispersion relations

Continuation methods are also useful for computing the continuous portion of disper-
sion relations, ΛCONT . For PDEs, dispersion relations take the form of polynomials in
both λ and k, so for a given k value, all possible solutions for λ can be computed in an
algorithmic way. This is not the case when looking at the integral operators for the
neural fields in general. Sometimes the dispersion relations have terms with rational
exponents that can not be removed, and in even worse cases, the Fourier transform
can not be evaluated symbolically at all. Even in these cases, however, it is still likely
that the k = 0 state gives an easier system in λ. Keeping only the roots that satisfy
the dispersion relation, we can perform parameter continuation in k to get different
branches of the dispersion relation ΛCONT .

There are a few things that must be noted when taking this approach. The first
is that while we are looking for dispersion relationships that are continuous, they are
not necessarily smooth. For instance, two separate branches of ΛCONT can collide
at a given value of k = kr, called a resonant point. The direction of a branch at a
resonant point changes discontinuously, i.e.,

lim
ϵ→0

(
λj(kr + ϵ)− λj(kr)

)
̸= lim

ϵ→0

(
λj(kr − ϵ)− λj(kr)

)
.

This is seen most often occurring on the real axis, and more rarely away from it.
The second is that for equations with rational exponents or more general functional

dependence, this only obtains the branches that are continuously connected to k = 0.
That is to say, there may be branches that exist for k ∈ (a, b) with b > a > 0 that
this approach does not pick up.

3.4.6 Applied to bifurcations of SHE

For the bifurcations that are caused by elements of the continuous dispersion relations
discussed in Section 3.2.3 we can formulate an appropriate continuation problem. The
formulation for continuation of Turing or dynamic Turing bifurcation is the same, but
as the case of the Turing bifurcation is just a simplified version, i.e., ωc = 0, we neglect
that completely. The formulation consists of two pieces, the finding of a turning point
of the dispersion, followed by continuation of such a turning point towards Reλ = 0.

Turning point of dispersion relation

First, we want to find a turning point of a complex branch of the dispersion relation,
recalled from earlier

F (λ, k, α) = 0, ((3.2.4) revisited)

and taken to be a scalar equation. Since F is a complex equation, to write it in real
coordinates, we take λ = µ + iω, substitute it into the dispersion relation, and split
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that into the real and imaginary parts.

F r(µ, ω, k, α) = ReF (µ+ iω, k, α) = 0

F i(µ, ω, k, α) = ImF (µ+ iω, k, α) = 0

We are looking for the turning point in (µ, k) space, so that means that it must satisfy
the equalities

µ′(k) = 0 → F r
kF

i
ω − F i

kF
r
ω ≡ J(µ, ω, k, α) = 0.

Thus we consider the state to be U = (µ, ω, k)T , and a continuation parameter β = α1.
The elements required for continuation of a turning point of the dispersion relation

are

g(U, β) =

F r(µ, ω, k, α)

F i(µ, ω, k, α)

J(µ, ω, k, α)

 = 0

∂Ug(U, β) =

∂µF r ∂ωF
r ∂kF

r

∂µF
i ∂ωF

i
ω ∂kF

i

∂µJ ∂ωJ ∂kJ


∂βg(U, β) =

∂α1F
r

∂α1F
i

∂α1J

 .

(3.4.5)

We note that this notation is hiding the SHE values. In general the SHE must be
continued simultaneously to this system of equations, because it is required to fully
specify F .

Dynamic Turing bifurcation

We perform continuation of Eq. (3.4.5), until we reach a point with µ ≈ 0. At this
point, we explicitly set µ = 0, and switch our view of the state to U = (ω, k, α1),
where the α1 parameter has been added to make up for the lost degree of freedom in
doing this. We take another parameter for continuation β = α2, and write

g(U, β) =

F r(0, ω, k, α)

F i(0, ω, k, α)

J(0, ω, k, α)


∂Ug(U, β) =

∂ωF r ∂kF
r ∂α1F

r

∂ωF
i ∂kF

i ∂α1F
i

∂ωJ ∂kJ ∂α1J


∂βg(U, β) =

∂α2F
r

∂α2F
i

∂α2J

 ,

(3.4.6)
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noting the different partial derivatives when compared to Eq. (3.4.5). From this
expression, we can refine approximations to the dynamic Turing bifurcation, using
just the g and ∂Ug expressions, and then perform continuation in the α2 parameter.

This approach will pick up dynamic Turing bifurcations, but we are most interested
in studying when these are the principal instability of the system. That is, we must
look at the rest of the dispersion relation, which must be computed using Section 3.4.5,
for example.

3.5 Summary

Above, we presented general formulations for finite and infinite dimensional dynam-
ical systems. We introduced the concept of bifurcations and center manifolds, and
briefly discussed the influences of symmetry. We looked in more detail at the specific
symmetry studied in this thesis – the square periodic tiling symmetry, D4 ⋉ T 2. And
finally the idea of continuation was presented, with its relevant domains of application
detailed. Now we move on to using these ideas to study the dynamics of neural field
models.
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This chapter will bring the view of dynamical systems from Chapter 3 to the scalar
neural field model described in Chapter 2. For this model,

u(x, t) = η ∗
(
K ⊗ S ◦ u(x, t) + p

)
, ((2.3.1) revisited)

it will progress through:

• Determining the equations that spatially homogeneous equilibria (SHE) will
satisfy,

• Linearization about SHE,
• Finding dispersion relation about SHE,
• Analyzing the unfolding of the dynamic Turing bifurcation that arises, and

59
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• Simulating solutions in the neighbourhood of the bifurcations.

It is mentioned again that the equation is taken on a two dimensional spatial
domain Ω = R2. The analysis is presented for homogeneous and isotropic problems,
but we note that the normal form result will hold for problems with explicit D4 ⋉ T 2

symmetry i.e., if the spatiotemporal connectivity satisfies this symmetry.
Novel results of this chapter are Section 4.3.1, the detection of the dynamic Turing

bifurcation from a dispersion relation with irreducible rational exponents, Section
4.3.1 where symbolic expressions for computing the normal form coefficients of the
D4⋉T 2 symmetric Hopf bifurcation are derived, and Section 4.4 where the bifurcating
solutions are simulated in its neighbourhood.

4.1 Preliminaries

All of the analysis presented in this chapter can be done on the scalar field in its general
form, without specifying a connectivity kernel, a synapse, or even a firing function.
This is because the model has only spatial and temporal convolutions, which allows
for simple representation in Fourier-Laplace space.

For visualizing the results presented here, specific kernels are chosen from those
discussed in Section 2.2.2. These will be worked in among the analysis, with the
relevant methods from Chapter 3 mentioned whenever they are used.

4.1.1 Integral transforms

First, we define the integral transforms which end up touching all facets of the coming
sections, and even find use in the next chapter. These are:

1. The Laplace transform

η̃(λ) =

∫ ∞

0

ds η(s)e−λs, (4.1.1)

2. The Fourier-Laplace transform

K̂(k, λ) =

∫
R2

dy1dy2

∫ ∞

0

dsK(y, s)e−(ik·y+λs). (4.1.2)

Fourier and Laplace transforming the scalar model, Eq. (2.3.1), we obtain

û(k, λ) = η̃(λ)K̂(k, λ)
(
Ŝ ◦ u

)
(k, λ) + p̂(k, λ), (4.1.3)

where the Fourier-Laplace transform of the composition is interpreted as(
Ŝ ◦ u

)
(k, λ) =

∫
R2

dy1dy2

∫ ∞

0

ds
(
S ◦ u(y, s)

)
e−(ik·y+λs).
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Specific kernels

For the alpha function synapse

η(t) = α2te−αt, ((2.3.5) revisited)

we have its Laplace transform

η̃(λ) =
1

(1 + λ/α)2
. (4.1.4)

For the double exponential connectivity, Eq. (2.3.8), combined with the constant,
homogeneous, isotropic and space-dependent delay, Eq. (2.3.6), our specific spatiotem-
poral connectivity is

K(x, t) =
1

2π

(
aee

−∥x∥ − air
2e−r∥x∥) δ(t+ ∥k∥

c

)
, (4.1.5)

and its Fourier-Laplace transform is.

K̂(k, λ) =
1 + λ/c(

(1 + λ/c)2 + k2
)3/2ae − r + λ/c(

(r + λ/c)2 + k2
)3/2 r2ai. (4.1.6)

4.1.2 Firing function

With the firing function as the sigmoid

S(u) =
Smax

1 + e−C(u−θ)
, ((2.3.2) revisited)

its derivatives satisfy

S ′(u) = CS(u)

(
1− S(u)

Smax

)
S ′′(u) =

C2S2(u)

Smax

(
1− S(u)

Smax

)
(1− S(u))

S ′′′(u) =
C3S3(u)

S2
max

(
1− S(u)

Smax

)(
3S2(u)−

(
3 + 2Smax

)
S(u) + Smax

)
.

(4.1.7)

4.2 Spatially homogeneous dynamics

Spatially homogeneous equilibria (SHE) of the neural field are very straightforward
to determine. We denote the SHE as u0, and also consider the extraneous input to
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be constant in space and time p(x, t) = p0. Subbing these into the scalar model gives

u0 = η ∗
(
K ⊗ S ◦ u0 + p0

)
=

∫ t

−∞
dτ η(t− τ)

(
S(u0)

∫ ∞

−∞
dt′
∫
Ω

dx′1x
′
2K (x− x′, t− t′) + p0

)
= η̃(0)

(
S(u0)K̂(0, 0) + p0

)
.

(4.2.1)

This is just a single equation. For the sigmoidal form of Eq. (2.3.2), it is easy to see
that u0 can have either 1, 2, or 3 solutions for a given p0 value, depending on the
parameters in S, η, and K.

4.2.1 Continuation

Because it is just a single equation, the continuation of the SHE is almost trivial.
Looking back to Section 3.4.2, we associate the state with U = u0, and consider all of
the parameters as the set β, so we have

g(u0, β) = u0 − η̃(0)
(
S(u0)K̂(0, 0) + p0

)
∂u0g(u0, β) = 1− γ1η̃(0)K̂(0, 0)

(4.2.2)

The derivative with respect to a specific parameter can also be easily expressed. We
can consider the parameter set to be composed of four different types of parameters,
β = {p0, βsyn, βcon, βsig}, the external forcing, the synaptic parameters, the connectiv-
ity parameters, and the sigmoidal parameters respectively. Identifying one of these as
our continuation parameter gives different possibilities for the parameter derivative:

∂p0g(u0, β) = −η̃(0),

∂βsyng(u0, β) = −
(
S(u0)K̂(0, 0) + p0

)
∂βsyn η̃(0, 0),

∂βcong(u0, β) = −η̃(0)S(u0)∂βconK̂(0, 0),

∂βsigg(u0, β) = −η̃(0)K̂(0, 0)∂βsigS(u0).

(4.2.3)

For the specific functions chosen for each piece of the model, a particular equation
we can look at for the SHE is

u0 − (ae − ai)S(u0)− p0 = 0 (4.2.4)

As it was mentioned that there is the possibility of 1, 2, or 3 SHE solutions for a given
parameter set, this implies that a continuation of u0 may result in fold bifurcations.
A pseudoarclength continuation in the p0 parameter shows this in Figure 4.1.
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Figure 4.1: Continuation of SHE in the scalar model, Eq. (4.2.4), demonstrating the
possibility of multiple solutions. Parameters are: ae = 41; ai = 40;C = 2, θ = 3,
and Smax set to different values for each curve. The transition from seeing no folds
(Smax = 2) to two folds (Smax = 3) implies that we would see the codimension 2 cusp
bifurcation in this region.

4.2.2 Linearization and dispersion relations

Now we linearize the scalar neural field equation about a general solution u0(x, t) by
subbing u0(x, t) + ϵu1(x, t) into the model, and keeping terms proportional to ϵ. The
result, after Taylor expanding the sigmoid as well, is

u1(x, t) = η ∗K ⊗
(
S ′ ◦ u0(x, t)

)
u1, (4.2.5)

which simplifies when u0 is a SHE

u1(x, t) = γ1η ∗K ⊗ u1, γ1 = S ′(u0).

A convenient notation to use for the upcoming nonlinear analysis is to rewrite the
linear equation to be

L(γ1)u1 ≡ (1− γ1η ∗K⊗)u1 = 0 (4.2.6)

With this linear equation, we take the ansatz

u1(x, t) = eik·x+λt,

which gives the dispersion relation

1− γ1η̃(λ)K̂(k, λ) = 0. (4.2.7)

We mention again that for homogeneous and isotropic spatial connections, the dis-
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persion relation only depends on the norm of k.
A very useful feature of this dispersion relation, is that γ1 can be varied inde-

pendently of the SHE. That is, we can fix parameters in the synapses η and the
spatiotemporal connectivity K, then look at the dispersion relation for varying γ1.
Once an interesting value of γ1 is obtained, we can move back to the SHE equation
and determine u0, p0, and the sigmoidal parameters such that the model is at the
interesting state.

The specific dispersion relation we visualize is in fact given by

(1 + λ/α)2 − γ1

[
1 + λ/c(

(1 + λ/c)2 + k2
)3/2ae − r + λ/c(

(r + λ/c)2 + k2
)3/2 r2ai

]
= 0, (4.2.8)

with continuation applied as discussed in Section 3.4.5. Various dispersion relations
for different parameter sets are shown in Figures 4.2–4.7.

With continuous dispersion relations computed, we can now turn our attention to
stability of the SHE with respect to spatially homogeneous modes as well as Fourier
modes with wavenumber k.

4.2.3 Homogeneous dynamics

For stability with respect to spatially homogeneous modes, we simply take k = 0 in
our dispersion relation

1− γ1η̃(λ)K̂(0, λ) = 0. (4.2.9)

For a discrete set of temporal eigenvalues satisfying this equation, we can define the
stable, unstable, and center subspaces as was done for the finite dimensional dynamical
system.

For our specific functions, the stability of the homogeneous dynamics is determined
by

(1 + λ/α)2 − γ1

[
1 + λ/c

|1 + λ/c|3
ae −

r + λ/c

|r + λ/c|3
r2ai

]
= 0, (4.2.10)

where we have left it in this form since λ ∈ C. Finding solutions to this is simpler
than the general k-dependent dispersion relation of Eq. (4.2.10).

4.3 D4 ⋉ T 2 symmetric Hopf

4.3.1 Finding dynamic Turing bifurcations

Once we have the homogeneous mode eigenvalues, λj(0), we can perform continuation
in k to obtain the distinct branches λj(k) ∈ ΛCONT . The process for doing this,
described in Section 3.4.5, can result in the continuous dispersion relations as shown
in Figures 4.2– 4.5.

The Turing and dynamic Turing bifurcations can now be detected by analysis of
these dispersion relations. In fact, due to the form of the dispersion relation for this
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Figure 4.2: Continuous dispersion relation for parameters: ae = 41; ai = 40; r =
1.1; c = 2;α = 1; γ1 = 0.6.
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Figure 4.3: Continuous dispersion relation for parameters: ae = 39; ai = 40; r =
0.9; c = 6;α = 1; γ1 = 0.4.
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Figure 4.4: Continuous dispersion relation for parameters: ae = 30; ai = 40; r =
1.1; c = 1;α = 1; γ1 = 0.6. The unstable portion corresponds to modes with k ∈
[0, 0.962). The instability of bulk oscillations is typical for parameter sets with small
transmission speeds.
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Figure 4.5: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 10;α = 1; γ1 = 0.5. The right panel is a zoom of the left. The black
dot represents a point in ΛCONT that may produce a dynamic Turing bifurcation on
increasing γ1.
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Figure 4.6: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 10;α = 1; γ1 = 1.003950769. The right panels show zooms of the left. The
black dot represents a point in ΛCONT that would produce a dynamic Turing bifur-
cation if the rest of dispersion relation was stable. The red dot shows the maximum
extent of an unstable branch.
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Figure 4.7: Continuous dispersion relation for parameters: ae = 121; ai = 120; r =
1.4; c = 6;α = 1; γ1 = γc ≈ 0.689077. Progressive zoom from the left. The black
dot represents a point in ΛCONT that produces a dynamic Turing bifurcation. The
green dot in the middle frame shows that decreasing the transmission speed c from
Figure 4.6 has stabilized the real branch. The right-most level shows that this is
indeed the dispersion behaviour depicted in the schematic view of Figure 3.2.

model, there is a simple way for detecting Turing bifurcations, which proceeds as
follows.

1. Set λ = 0 in the dispersion relation

1

γ1
= η̃(0)K̂(k, 0) (4.3.1)

2. If
max
k>0

η̃(0)K̂(k, 0) > 0,

Then a Turing bifurcation exists for

kTu
c = argmax

k
η(0)K̂(k, 0), (4.3.2)

with γ1 = γTu
c .

A variation of this method was initially applied to finding Turing bifurcations in one
dimensional neural fields by Hutt et al. [3]. Its generalization to the two dimensional
homogeneous isotropic case is trivial.

However, we are not interested in the formation of stationary patterns, so we do not
get so lucky with such a simple algorithm. For instance, when we set λ = iωc, ωc > 0,
and split the dispersion relation into real and imaginary parts, we obtain the system
of two equations

1− γcRe η̃(iωc)K̂(kdTu
c , iωc) = 0

γc Im η̃(iωc)K̂(kdTu
c , iωc) = 0.

(4.3.3)

For a one dimensional neural field, this can be applied successfully to find ωc(k
dTu
c ) as

in Venkov et al. [9] and Hutt et al. [3], because the resulting expressions are polynomial
in ω and k. In two dimensional space, it is rare to see dispersion relations that are
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polynomial, so applying this approach leaves us with complicated expressions such as

1− (ω/α)2

γ1
=

[(
cos

(
3

2
θ1

)
+
ω

c
sin

(
3

2
θ1

))
aeR

−3/2
1 −(

r cos

(
3

2
θr

)
+
ω

c
sin

(
3

2
θr

))
air

2R−3/2
r

]
,

(2/α)ω

γ1
=

[(
ω

c
cos

(
3

2
θ1

)
− sin

(
3

2
θ1

))
aeR

−3/2
1 −(

ω

c
cos

(
3

2
θr

)
− r sin

(
3

2
θr

))
air

2R−3/2
r

]
,

(4.3.4)

with (noting the subscripts)

Rz =
√

(z2 + k2 − ω2/c2)2 + (2ω/c)2z2,

θz = arctan
2ωz/c

z2 + k2 − ω2/c2
.

This is the expression that results for our specific choice of synapse and connectivities,
and even with attempted simplification through the application of trig identities, it
remains difficult to work with. This is why the continuation approach of Section 3.4.6
was discussed.

With continuous dispersion curves computed as in Figure 4.5, we choose a turning
point that looks like it has the potential to generate a dynamic Turing bifurcation as
the primary instability. Such a point is displayed as the black dot in this figure. The
turning point is continued by applying Eq. (3.4.5) in the parameter γ1, until we get
it to λ = 0 as in Figure 4.6.

However, the SHE is already unstable at this point, looking at the branch on the
real axis with maxReλj > 0. So, we switch to a new parameter, the transmission
speed c, and perform continuation using Eq. (3.4.6) until maxReλj < 0 for all of the
branches except the one causing the dynamic Turing instability. The result is the
parameter set given in Table 4.1, with continuous dispersion relation in Figure 4.7.

With a principal dynamic Turing bifurcation located, we now perform our restric-
tion to square symmetric modes, and try to compute the normal form coefficients.

At the dynamic Turing bifurcation, the bifurcation parameter, the wave number
and the angular frequency take critical values γc, kc and ωc, respectively. Correspond-
ingly, the critical wavenumber and critical frequency also define a length scale and
time scale at the bifurcation point Lc = 2π/kc and Tc = 2π/ωc, respectively. Again
we stress that in general on R2 the dimension of the nullspace of L(γc) is infinite
dimensional due to the degree of freedom in k.

On the domain [0, Lc]
2×[0, Tc] with periodic boundary conditions, it is very natural
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Parameter Value

ae 121

ai 120

r 1.4

c 6.0

α 1.0

γ1 = γc 0.689077

ωc 3.400300

kc 1.089196

Table 4.1: Parameters that will display a dynamic Turing bifurcation for the specific
synapse and connectivity, Eqs. (2.3.5) and (4.1.5). Important to note that only the
synapse and connectivity parameters need be defined and γ1 can be taken as its own
distinct parameter.

to define the eigenfunctions
ϕ1 = ei(ωct+kcx1),

ϕ2 = ei(ωct−kcx1),

ϕ3 = ei(ωct+kcx2),

ϕ4 = ei(ωct−kcx2),

(4.3.5)

which can be taken as a basis for the nullspace of L(γc)

kerL(γc) = span
{
ϕ1, ϕ2, ϕ3, ϕ4, ϕ̄1, ϕ̄2, ϕ̄3, ϕ̄4

}
,

with the bars denoting complex conjugation.
The linear analysis in Section 4.2.2 allows us to extract the bifurcation type by

the computation of the eigenvalue spectrum of the corresponding linear operator.
However, the linear analysis leads to degenerate solutions and does not allow us to
determine the dynamic spatial patterns that emerge in the neighbourhood of the
bifurcation. To extract criteria for the specific patterns, it is necessary to perform
a weakly nonlinear analysis. To this end, one considers the linear eigenbasis of the
nullspace of L(γc) and investigates the nonlinear interaction of the system projections
on this basis.

Performing a center manifold reduction on this problem should be possible as well,
such as through an extension of the rigorous results in Veltz & Faugeras [8] to two-
dimensional space. However this is beyond the scope of this thesis as our end goal
is simply to obtain behaviour of the square symmetric modes in the neighbourhood
of the bifurcation. We do expect that a center manifold reduction will result in the
same expressions as the weakly nonlinear analysis, as seen in Folias [1], where Hopf
bifurcations of localized solutions were studied without transmission delays.

To perform weakly nonlinear analysis at a dynamic Turing bifurcation, it is neces-
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sary to consider higher order perturbations from the equilibrium state u0 beyond the
linear limit. In particular, the subsequent analysis takes into account terms of cubic
order of the transfer function S leading to a model of up to 3rd order perturbations

S(u) = S(u0) + γ1 (u− u0) + γ2 (u− u0)
2 + γ3 (u− u0)

3 +O
(
(u− u0)

4
)
, (4.3.6)

with γn = ∂nuS(u0)/n! evaluated at the homogeneous equilibrium u0.

Multiple time scales

Just beyond a dynamic Turing bifurcation, dominant eigenmodes grow slowly in am-
plitude. This leads naturally to the idea of identifying different time scales in the
system. The behaviour that occurs at all but the slowest of time scales can be dis-
carded to obtain information about the envelopes, or amplitudes, of the slowest scale.

If we Taylor expand the dispersion curve, Eq. (4.2.7), about the temporal eigen-
value with maximum real part, we obtain Re(λ) ∼ γ1 − γc and Im(λ) ∼ k − kc ∼√
γ1 − γc near the dynamic Turing bifurcation. For γ1 ̸= γc, emergent patterns can

thus be written as an infinite sum of unstable modes of the form

eµ0(γ1−γc)tei
√
γ1−γck0·xei(ωct+kc·x),

with µ0 and k0 some unknown constants in the proportionalities. If we choose a scaling
parameter ϵ ∼

√
γ1 − γc, then with ϵ small, we can identify the fast eigenmodes as

ei(ωct+kc·x), and the slow modulations of the form eµ0ϵ2teiϵk0·x.
We define scaled parameters, χ = ϵx and τ = ϵ2t according to this reasoning,

and also include an intermediate time scale θ = ϵt which assists in stepping through
some integrals in the perturbative analysis as shown in Appendix A.1.1. Finally
the analysis permits us to write solutions in the form A(χ, θ, τ)ei(ωct+kc·x), with A
containing everything we do not know about the slower scales. With wave vectors
(±kc, 0)T and (0,±kc)T , these are linear combinations of the basis functions spanning
kerL(γc) given in Eq. (4.3.5). In addition, the individual amplitudes depend on a
single scaled spatial coordinate only rather than both of them, i.e., A1 = A1(χ1, θ, τ).

Now, we take a perturbation of the solution to the full model, Eq. (2.3.1), in the
form

u (x, t)− u0 =
∞∑
n=1

ϵnun (x, t,χ, θ, τ) . (4.3.7)

with unknown functions un. Inserting this ansatz into the model equation, we can
pull out the equations for each order of ϵ

(1− γcM0)u1 = g1 = 0,

(1− γcM0)u2 = g2 = γ2M0u
2
1 + γcM1u1,

(1− γcM0)u3 = g3 =M0

(
2γ2u1u2 + γ3u

3
1 + δu1

)
+M1

(
γcu2 + γ2u

2
1

)
+ γcM2u1.

(4.3.8)
where gn(u0, u1, . . . , un−1) is a shorthand notation for the right hand sides, and
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δ ≡ (γ1−γc)/ϵ2, a scaled distance from the bifurcation. TheMi operators are defined
as

M0 =η ∗K⊗,

M1 =− η ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
− (tη ∗K + η ∗ tK)⊗ ∂

∂θ
,

M2 =
1

2
η ∗
(
x21K ⊗ ∂2

∂χ2
1

+ x22K ⊗ ∂2

∂χ2
2

)
+ η ∗ x1x2K ⊗ ∂

∂χ1

∂

∂χ2

+ tη ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+ η ∗ t
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+
1

2

(
t2η ∗K + 2tη ∗ tK + η ∗ t2K

)
⊗ ∂2

∂θ2

+ (tη ∗K + η ∗ tK)⊗ ∂

∂τ
,

(4.3.9)

with details of their computation given in Appendix A.1.1.
Noticing that the operator on the left hand side of (4.3.8) is identical to L(γc) in

all orders, we see that our perturbative solutions originate from the kernel of L(γc).
In its general form, we write

u1(x, t) =
4∑

i=1

(
Aiϕi + Āiϕ̄i

)
(4.3.10)

so that now the unknowns in the problem are the amplitudes A1 (χ1, θ, τ), A2 (χ1, θ, τ),
A3 (χ2, θ, τ), and A4 (χ2, θ, τ) which are functions of the scaled independent variables.
By virtue of the structure of the perturbation solutions, the Fredholm alternative can
be applied to find equations for these amplitudes.

Fredholm alternative

The form of the perturbation expansion is

Lun = gn(u1, u2, . . . , un−1),

such that the right hand side always contains known quantities. Thus to construct
solutions that are a finite truncation of the system, we just need to know the inverse
of L. The Fredholm alternative may be generalized from matrices to include general
linear operators [2]. Applying this generalization to L will put solvability conditions
on the gn, which will lead to conditions on the amplitudes.

Considering the basis on the square periodic domain that we have already written
(4.3.10), we notice that this solution is also periodic in time. Thus, we are concern-
ing ourselves with the domain Λ = [0, 2π/kc]

2 × [0, 2π/ωc]. To apply the Fredholm
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alternative, we define the inner product to be

⟨u, v⟩ = k2cωc

8π3

∫
Λ

dx1dx2dt ū(x, t)v(x, t). (4.3.11)

This definition is chosen such that our basis for the nullspace (4.3.5) is orthonormal,
⟨ϕi, ϕj⟩ = δij.

Under this inner product, the adjoint to L is given by L∗ = 1−γcη(−t)∗K(x,−t)⊗.
Since the dispersion relation, Eq. (4.2.7), is invariant under time reversal t → −t, L
and L∗ have the same nullspace.

The Fredholm alternative states that for all Lu = g to have a solution for singular
L, it must hold that ⟨v, g⟩ = 0 for all v ∈ kerL. In terms of our situation, this means
that computing the inner products

⟨ϕi, gn⟩ = 0, i = 1 . . . 4, n = 1, 2, . . . , (4.3.12)

will put solvability conditions on the amplitudes Ai.
For the first nontrivial equation, and looking specifically at ϕ1, we obtain

⟨ϕ1, g2⟩ = 0 = γ2⟨ϕ1,M0u
2
1⟩+ γc⟨ϕ1,M1u1⟩

= γ2η̃K̂⟨ϕ1, u
2
1⟩+ γc

(
−η̃ ∂

∂ik1

∂

∂χ1

K̂ +
∂

∂iω

∂

∂θ
η̃K̂

)
⟨ϕ1, u1⟩

=

(
−η̃ ∂

∂ik1

∂

∂χ1

K̂ +
∂

∂iω

∂

∂θ
η̃K̂

)
A1

=

(
∂

∂θ
− vg1

∂

∂χ1

)
A1

(4.3.13)

where vg1 = ∂ω/∂k1|k=(kc,0)T
can be considered a group velocity, and the Laplace and

Fourier-Laplace transforms are evaluated at the critical arguments. Going from the
1st to 2nd line in Eq. (4.3.13) is detailed in Appendix A.1.2. Going from the 2nd
to 3rd line in (4.3.13) makes use of ⟨ϕi, u

2
1⟩ = 0, and ⟨ϕi, u1⟩ = Ai. The final line of

(4.3.13) has a solution that restricts how A1 depends on its arguments. Performing
similar calculation steps with the other basis functions leads to restrictions on all of
the amplitudes

A1 (χ1, θ, τ) = A1 (χ1 + vg1θ, τ) ≡ A1 (ξ1, τ)

A2 (χ1, θ, τ) = A2 (χ1 − vg1θ, τ) ≡ A2 (ξ2, τ)

A3 (χ2, θ, τ) = A3 (χ2 + vg2θ, τ) ≡ A3 (ξ3, τ)

A4 (χ2, θ, τ) = A4 (χ2 − vg2θ, τ) ≡ A4 (ξ4, τ) ,

where vg2 = ∂ω/∂k2|k=(0,kc)T
= vg1 ≡ vg, and note the relative coordinates ξi intro-

duced by our abuse of notation

ξ1 = χ1 + vg1θ,

ξ2 = χ1 − vg1θ,

ξ3 = χ2 + vg2θ,

ξ4 = χ2 − vg2θ.
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Calculating ⟨ϕi, g3⟩ requires more steps. In particular, there is the inner product
⟨ϕi, u

3
1⟩ which requires the cube of the assumed solution (4.3.10), and then there are

⟨ϕi, u2⟩ and ⟨ϕi, u1u2⟩ which both require an expression for u2 before they can be
evaluated, see Appendix A.1.2 again for details. Eventually, we gain equations for all
four amplitudes

∂A1

∂τ
= a0A1 + A1

[
a1⟨|A2|2⟩2 + a2

(
|A1|2 + ⟨|A2|2⟩2

)
+ a3

(
⟨|A3|2⟩3 + ⟨|A4|2⟩4

)]
+

+ a4⟨Ā2⟩2⟨A3⟩3⟨A4⟩4 + a5
∂2A1

∂ξ21
,

(4.3.14)
∂A2

∂τ
= a0A2 + A2

[
a1⟨|A1|2⟩1 + a2

(
⟨|A1|2⟩1 + |A2|2

)
+ a3

(
⟨|A3|2⟩3 + ⟨|A4|2⟩4

)]
+

+ a4⟨Ā1⟩1⟨A3⟩3⟨A4⟩4 + a5
∂2A2

∂ξ22
(4.3.15)

∂A3

∂τ
= a0A3 + A3

[
a1⟨|A4|2⟩4 + a2

(
|A3|2 + ⟨|A4|2⟩4

)
+ a3

(
⟨|A1|2⟩1 + ⟨|A2|2⟩2

)]
+

+ a4⟨Ā4⟩4⟨A1⟩1⟨A2⟩2 + a5
∂2A3

∂ξ23
(4.3.16)

∂A4

∂τ
= a0A4 + A4

[
a1⟨|A3|2⟩3 + a2

(
⟨|A3|2⟩3 + |A4|2

)
+ a3

(
⟨|A1|2⟩1 + ⟨|A2|2⟩2

)]
+

+ a4⟨Ā3⟩3⟨A1⟩1⟨A2⟩2 + a5
∂2A4

∂ξ24
(4.3.17)

where the angle brackets ⟨·⟩i indicate an average. The subscript i of these brackets
indicate which ξi has been averaged over. As an example, we can look at patterns
periodic in ξi, with period Pi, with the average given by

⟨X⟩i =
1

Pi

∫ Pi

0

Xdξi. (4.3.18)

The parameters ai of Eqs. (4.3.14) to (4.3.17) are given by

a0 = −δD
a1 = −D

[
2γ22 (2C200 + 2C020 − C220) + 3γ3

]
a2 = −D

[
2γ22 (2C000 + C220) + 3γ3

]
a3 = −2D

[
2γ22 (C211 + C011 + C000) + 3γ3

]
a4 = −2D

[
2γ22 (2C011 + C200) + 3γ3

]
a5 = −γ

2
c

2
D

(
∂

∂ik1
− vg

∂

∂iω

)2 (
η̃K̂
)

D =
1

γ2c

(
∂(η̃K̂)

∂iω

)−1

,

(4.3.19)
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with the shorthand notation

Clmn =
η̃(ilωc)K̂((mkc, nkc)

T , ilωc)

1− γcη̃(ilωc)K̂((mkc, nkc)T , ilωc)
. (4.3.20)

4.3.2 D4 ⋉ T 2 Normal form

For small ϵ, in a first approximation one may assume that the amplitudes Ai do not
vary with ξi leading to

dA1

dτ
= a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā2A3A4

dA2

dτ
= a0A2 + A2

[
a1|A1|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

)]
+ a4Ā1A3A4

dA3

dτ
= a0A3 + A3

[
a1|A4|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā4A1A2

dA4

dτ
= a0A4 + A4

[
a1|A3|2 + a2

(
|A3|2 + |A4|2

)
+ a3

(
|A1|2 + |A2|2

)]
+ a4Ā3A1A2.

((3.3.3) revisited)
This is the normal form for the Hopf bifurcation on a square lattice that is determined
and analyzed in Silber & Knobloch [7], and discussed in Section 3.3.2.

4.3.3 Locating degeneracies

This section explains how to use the normal form of Eq. (3.3.3) to reveal spatiotem-
poral solutions of Eq. (2.3.1) assuming the specific temporal dynamics and spatial
interaction, Eqs. (2.3.5) and (4.1.5).

Parameter search

Despite having a complicated normal form parameter space, C4, we can make use of
Silber & Knobloch’s analysis to determine the branches of the periodic solutions for
a given set of model parameters. We find the system parameters c, α, ae, ai, r, and
γ1 = γc such that a dynamic Turing bifurcation emerges, then apply Eqs. (4.3.19) and
compare the parameters found to the conditions in Table 3.1 to see how the solutions
branch.

To compute the normal form parameters, we only need to have set the specific
functions and parameters for the temporal and spatial kernels, η and K, respectively.
Once these are set, varying the steepness of the transfer function f changes only γ2
and γ3, and we can observe how the branching diagram changes.

As an example, we set the system parameters as those depicted with the spectrum
in Table 4.1, with the maximum of the sigmoid Smax = 1. We note that the maximum
slope of the transfer function is γ = C/4. Thus, for a small steepness C < 4γc, we
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C interval Region number Distinguishing characteristic

(4γc, C1) 21(-) TR and AR both supercritical and stable

(C1, C2) 24(-) TR subcritical, AR supercritical and stable

(C2, C3) 23(-) TR and AR both subcritical

(C3, C4) 25(-) Only TS and SS supercritical

(C4, C5) 20(-) Only SS supercritical

(C5,∞) 1(-) All modes subcritical

Table 4.2: The regions of normal form parameter space traversed as steepness is
increased. The visualization of this is in Figure 4.8.

Transition Degeneracy condition Solution

21 → 24 Re (a2) = 0 C1 ≈ 3.209199

24 → 23 Re (a1 + 2a2 − (f + |a4|)/2) = 0 C2 ≈ 3.522248

23 → 25 Re (a1 + 2a2) = 0 C3 ≈ 3.525135

25 → 20 Re (a1 + 4a2 − f) = 0 C4 ≈ 4.214041

20 → 1 Re (a1 + 2a2 − (f − |a4|)/2) = 0 C5 ≈ 16.069927

Table 4.3: The transitions between branching diagrams, their associated degeneracy
conditions, and the C values that satisfy this for the parameters in Table 4.1. Note
that f used here is a combination of parameters defined in [7] for convenience f =
a1 + 2a2 − 2a3.

find that there will be no dynamic Turing bifurcation. For C = 4γc, there exists a
single dynamic Turing bifurcation but it is degenerate in the sense that the spectrum
never destabilizes, but just touches the complex axis. For C > 4γc, our analysis can
be applied, and the behaviour as C is increased further is summarized in Table 4.2,
and visualized in Figure 4.8.

Note that this analysis approach does not reveal what happens for explicit equal-
ities C = Ci. This is because these represent degenerate cases in the normal form,
and to understand what is happening we need to take into account nonlinear terms of
larger than cubic orders. As there are a large number of ways in which these degen-
eracies arise, we refrain from analyzing all possibilities. Rather we investigate how to
determine when a specific degeneracy emerges while varying C.

To compute the values of Ci of the degenerate cases, the problem can be formulated
in terms of a Newton iteration to solve the nearby degeneracy condition. For instance,
for C1 we observe that C ≈ 4γc + 0.5 is close to the degeneracy condition between
regions 21 and 24. The equation for this degeneracy is simply given by

Re (a2) = 0,
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Figure 4.8: The behaviour of the dynamic Turing bifurcations for increasing steepness
C > 4γc for parameters taken from Table 4.1. Left : Relation between steepness
parameter C and values of u0 at the dynamic Turing bifurcations, the lower being a
more detailed view of a region in the upper. Right : Branching diagram at the lower
bifurcation point, noting that the branching diagram for the upper point is simply
the mirror image. Definition and values of Ci are given in Table 4.2 and Table 4.3,
respectively.
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as determined in [7]. Taking the equation to be just a function of C, we can apply
Newton’s method to obtain the value of C1 that satisfies this to arbitrary precision,
limited only by the precision of the previously calculated γc, kc, and ωc. Increasing
the parameter C, one crosses different degeneracy conditions. These conditions, along
with the corresponding values of Ci where they are satisfied, are given in Table 4.3.

4.4 Simulation

To compare the analytical results to numerical solutions of Eq. (2.3.1), we have em-
ployed a recently developed numerical integration scheme1 [5, 4]. The numerical
scheme assumes a discretization in space and time, and considers a fixed finite trans-
mission speed. To integrate over time, a forward Euler scheme is applied. The com-
putation of the spatial integral in Eq. (2.3.1) is done as a combination of a spatial
convolution and a temporal integration, where the former is implemented by a Fast
Fourier transform and the latter utilizes a rectangular integration rule.

By virtue of the spatial discretization, it is mandatory to choose the spatial ex-
tension of the integration domain |Ω| = L2 with side length L and the number of
discretization intervals N in such a way to ensure the convergence of the numerical
solution to the analytical results. The major criteria for the parameters are:

• Discretization of wave vectors: the wave vector k = (kx, ky)
T is discrete due to

periodic boundary condition, i.e. ki = ni∆k, ni ∈ Z for i = x, y and ∆k = 2π/L.
For a finite number N ni = −N/2, . . . , N/2. Hence the maximum resolution for
wave vectors is given by ∆k = 2π/N∆x where ∆x = L/N , and k = ∥k∥ is a
multiple of ∆k. This insight is important when scanning the parameter space
for values of k which destabilize the stationary state. In addition, ∆k has to
be chosen in such a way that it allows to sample the Fourier transforms with a
sufficiently high resolution, e.g. resolving the locations of local extrema of the
transforms.

• Discretization of space: the analytical study assumes periodically repeating so-
lutions on an infinite spatial domain implying that there are no boundary effects
affecting the Fourier transform of the spatial connectivity kernel while, on the
other side, taking into account periodic boundary conditions. To ensure the
validity of these assumptions, we have guaranteed by a large enough L and N
that the analytical and spatial norms of the connection kernels are identical up
to a relative error < 0.01.

• Numerical integration time: The larger N , the better the numerical approxima-
tion of the analytical dynamics. However, the number of delayed rings to be
integrated in the delay integral increases with the spatial discretization N . To
see this, we note that there is a maximum transmission delay τm = L

2c
due to

the finiteness of location space. Since the numerical integration makes it neces-
sary to discretize the delay integral into time steps ∆t = τm/Tm, the numerical

1NeuralFieldSimulator: https://gforge.inria.fr/projects/nfsimulator/

https://gforge.inria.fr/projects/nfsimulator/
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Travelling Rolls (stable)

Alternating Rolls (stable)

Figure 4.9: Snapshots of stable TR and AR from NeuralFieldSimulator [6]: direct
numerical simulation of the integral model Eq. (2.3.1) just beyond the discussed bi-
furcation point. Steepness parameter set to C = 2.856, which corresponds to region
21(-) in Figure 4.8. Time in the frames is increasing by one-eighth of the critical
period Tc ≈ 1.84783. Simulation domain size is L = 7Lc ≈ 40.3805, discretized into
N = 512 points in each dimension.

integration performs a sum over rings of number

Tm =
∆x

2c∆t
N, (4.4.1)

i.e. the number of terms to sum up in the integral is proportional to the number
of discretization intervals N .

The relation (4.4.1) leads to a trade-off between the integration time and the integra-
tion precision.

With the above considered, we are able to simulate the predicted stable modes
of region 21(−) (TR and AR) from Fig. 4.8. For our parameter set, we find that
a simulation domain of length L = 7lc, with a discretization of N = 512 points in
each spatial dimension is enough for the norm of the discretized kernel connectivity
to match the norm of the analytical connectivity within a tolerance of 0.01.

Simulating a desired mode requires us to use initial conditions (initial history,
technically) that are within the basin of attraction for that mode. We know no
details of the geometry of these basins, and simulating from random initial conditions
is not likely to produce one of the principal modes. However, starting the simulation
from conditions that are the correct shape (but wrong amplitude) of the desired mode
should allow it to evolve towards the mode. This is what was done to generate the
fields in Figure 4.9, which are taken after the transient variation in amplitude has
decayed.

When we do start with random perturbations in the initial conditions, the sim-
ulation becomes more unpredictable. For example, if we set initial conditions that
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Figure 4.10: When noisy initial conditions are used in simulation, i.e., the initial field
is not periodic on (0, Lc)

2, simulations progress in an unpredictable manner. However,
it is usually possible to visually pick out regions that resemble the elementary modes
from the D4 ⋉ T 2 symmetric restriction, e.g., TR with different directions, local AR,
etc. Left to right, top to bottom, the time of the frames is again progressing by
one-eighth of the critical period.

are in the shape of a standing square wave, and add to this Gaussian white noise
across the domain, then after some time, the numerical solution may or may not have
regions that resemble the elementary modes discussed in our analysis. This comes
about because our analysis was performed for a single unit cell near the bifurcation
point, i.e., length L = Lc, but our numerics are restricted to being on a domain at
least seven times this size. Stability that we speak of thus refers to stability with
respect to perturbations with the periodicity of the unit cell. After a long simulation
time, this example of randomized initial conditions is shown in Figure 4.10. For our
parameters, the simulation is eventually dominated by TR-like behaviour, which is
good because our analysis showed these to be stable, but there are deviations from
the elementary TR solution in the waves’ profile.
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This chapter will bring the view of dynamical systems from Chapter 3 to Liley’s neural
field model which was described in Chapter 2. For this model, we must recall both
the integral form,

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)

)
,

Ijk(x, t) = ηjk ∗
(
Kjk ⊗ Sj ◦ hj(x, t) + pjk

)
,

((2.4.1) revisited)

83
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which is used for the weakly nonlinear analysis, and the specific PDE form

τk
∂

∂t
hk(x, t) = hrk − hk(x, t) +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)(

∂

∂t
+ γjk

)2

Ijk(x, t) = exp(1)Γjkγjk

[
Nβ

jkSj ◦ hj(x, t) + ϕjk(x, t) + pjk

]
[(

∂

∂t
+ vΛ

)2

− 3

2
v2∇2

]
ϕek(x, t) = Nα

ekv
2Λ2Se ◦ he(x, t)

ϕik(x, t) = 0,
((2.4.6) revisited)

which is used for numerical simulation.
This chapter focuses on applying the weakly nonlinear analysis of the D4 ⋉ T 2

symmetric Hopf bifurcation to a system of integral equations, followed by the devel-
opment of simulation code for the PDE variant Liley’s model. We then apply the
developed ideas and methods to two specific parameter sets chosen from literature to
evaluate them and gain some further insight.

5.1 Preliminaries

The first thing we will do is write the different forms of Liley’s model as vector
systems, expanding the dense index notation. First is the general form with the
integral convolutions. This does not require any manipulations, we simply write the
6 components of the model out in vector form

he

hi

Iee

Iie

Iei

Iii



=



ηe ∗
(
hre +

heq
ee−he(x,t)

|heq
ee−hr

e| Iee(x, t) +
heq
ie−he(x,t)

|heq
ie−hr

e| Iie(x, t)
)

ηi ∗
(
hri +

heq
ei−hi(x,t)

|heq
ei−hr

i |
Iei(x, t) +

heq
ii −hi(x,t)

|heq
ii −hr

i |
Iii(x, t)

)
ηee ∗

(
Kee ⊗ Se ◦ he(x, t) + pee

)
ηie ∗

(
Kie ⊗ Si ◦ hi(x, t) + pie

)
ηei ∗

(
Kei ⊗ Se ◦ he(x, t) + pei

)
ηii ∗

(
Kii ⊗ Si ◦ hi(x, t) + pii

)



. (5.1.1)

We will consistently use small letters to denote vectors of this general integral system,
i.e., u(x, t) = (he, hi, Iee, Iie, Iei, Iii)

T (x, t) for this chapter.
For a vector system from the specific PDE formulation, we introduce additional

variables to split the postsynaptic potentials and long range connections from their
second order form in a common way. For postsynaptic potentials, we introduce the
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Jjk fields,
∂

∂t
Ijk = Jjk − γjkIjk

∂

∂t
Jjk = exp(1)Γjkγjk

{
Nβ

jkSj [hj] + ϕjk + pjk

}
− γjkJjk

(5.1.2)

and for the long-range connections, the ψek fields,

∂

∂t
ϕek = ψek − vΛϕek

∂

∂t
ψek = v2Λ2Nα

ekSe [he] +
3

2
v2∇2ϕek − vΛψek.

(5.1.3)

This allows the PDE system for Liley’s model to be written as

∂

∂t



he(x, t)

hi(x, t)

Iee(x, t)

Jee(x, t)

Iie(x, t)

Jie(x, t)

Iei(x, t)

Jei(x, t)

Iii(x, t)

Jii(x, t)

ϕee(x, t)

ψee(x, t)

ϕei(x, t)

ψei(x, t)



=



1
τe

(
hre − he(x, t) +

heq
ee−he(x,t)

|heq
ee−hr

e| Iee(x, t) +
heq
ie−he(x,t)

|heq
ie−hr

e| Iie(x, t)
)

1
τi

(
hri − hi(x, t) +

heq
ei−he(x,t)

|heq
ei−hr

i |
Iei(x, t) +

heq
ii −hi(x,t)

|heq
ii −hr

i |
Iii(x, t)

)
Jee(x, t)− γeeIee(x, t)

exp(1)Γeeγee
(
Nβ

eeSe [he(x, t)] + ϕee(x, t) + pee
)
− γeeJee(x, t)

Jie(x, t)− γieIie(x, t)

exp(1)Γieγie
(
Nβ

ieSi [hi(x, t)] + ϕie(x, t) + pie
)
− γieJie(x, t)

Jei(x, t)− γeiIei(x, t)

exp(1)Γeiγei
(
Nβ

eiSe [he(x, t)] + ϕei(x, t) + pei
)
− γeiJei(x, t)

Jii(x, t)− γiiIii(x, t)

exp(1)Γiiγii
(
Nβ

iiSi [hi(x, t)] + ϕii(x, t) + pii
)
− γiiJii(x, t)

ψee(x, t)− vΛϕee(x, t)

v2Λ2Nα
eeSe [he(x, t)] +

3
2
v2∇2ϕee(x, t)− vΛψee(x, t)

ψei(x, t)− vΛϕei(x, t)

v2Λ2Nα
eiSe [he(x, t)] +

3
2
v2∇2ϕei(x, t)− vΛψei(x, t)


(5.1.4)

which fits the first order (in time) general form for an infinite dimensional dynamical
system. We will consistently denote the vectors for this system as upper case letters,
i.e., U(x, t) = (he, hi, Iee, Jee, Iie, Jie, Iei, Jei, Iii, Jii, ϕee, ψee, ϕei, ψei)

T (x, t).
It is because of the large expression for the PDE system that the weakly nonlinear

analysis is done on the simpler 6 component integral system of Eq. (5.1.1). In addition
to this, there is an added bonus: such analysis can be used with general connectivities.
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5.1.1 Linearization and dispersion

Assuming we have some solution u0 to Liley’s model, we can write the linearization
of the integral form as

Lu1(x, t) =



L11 0 L13 L14 0 0

0 L22 0 0 L25 L26

L31 0 1 0 0 0

0 L42 0 1 0 0

L51 0 0 0 1 0

0 L62 0 0 0 1


u1(x, t) = 0 (5.1.5)

with the components

L11 = 1 +
1

|heqee − hre|
ηe ∗

(
I0ee(x, t) ·

)
+

1

|heqie − hre|
ηe ∗

(
I0ie(x, t) ·

)
L13 =

1

|heqee − hre|
ηe ∗

(
h0e(x, t) ·

)
L14 =

1

|heqie − hre|
ηe ∗

(
h0e(x, t) ·

)
L22 = 1 +

1

|heqei − hri |
ηi ∗

(
I0ei(x, t) ·

)
+

1

|heqii − hri |
ηi ∗

(
I0ii(x, t) ·

)
L25 =

1

|heqei − hri |
ηi ∗

(
h0i (x, t) ·

)
L26 =

1

|heqii − hri |
ηi ∗

(
h0i (x, t) ·

)
L31 = −ηee ∗

(
Kee ⊗ S ′

e[h
0
e(x, t)] ·

)
L42 = −ηie ∗

(
Kie ⊗ S ′

i[h
0
i (x, t)] ·

)
L51 = −ηei ∗

(
Kei ⊗ S ′

e[h
0
e(x, t)] ·

)
L62 = −ηii ∗

(
Kii ⊗ S ′

i[h
0
i (x, t)] ·

)
.

(5.1.6)

For SHE, this simplifies in a similar way to the scalar equation: All of the zeroth order
terms can be taken out of the integral operators, so the operators will act only on
the higher order solutions to which this is applied. Now we look at perturbations of
the form u1 = qeik·xeλt. This allows us to write the linear system in Fourier-Laplace
space

L(k, λ)q =



1 +
(

I0ee
|heq

ee−hr
e|
+ I0ie

|heq
ie−hr

e|

)
η̃e 0 h0

e

|heq
ee−hr

e|
η̃e

h0
e

|heq
ie−hr

e|
η̃e 0 0

0 1 +
(

I0ei
|heq

ei−hr
i |
+

I0ii
|heq

ii −hr
i |

)
η̃i 0 0

h0
i

|heq
ei−hr

i |
η̃i

h0
i

|heq
ii −hr

i |
η̃i

−γ1e η̃eK̂ee 0 1 0 0 0

0 −γ1i η̃iK̂ie 0 0 1 0

−γ1e η̃eK̂ei 0 0 1 0 0

0 −γ1i η̃iK̂ii 0 0 0 1


q = 0,

(5.1.7)
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where the arguments in η̃(λ) and K̂(k, λ) are always the same, and we have introduced
the short notation

γ1e = S ′
e(h

0
e), γ1i = S ′

i(h
0
i ) (5.1.8)

The dispersion relation will then satisfy detL(k, λ) = 0.

5.1.2 D4 ⋉ T 2 symmetric Hopf

The normal form coefficients for Liley’s model can also be computed using a multi-
scale analysis as was done for the scalar field. For this, however, we do not consider
the long spatial scale in order to simplify the calculations, and can obtain the normal
form of Eq. (3.3.3) directly. The weakly nonlinear analysis now proceeds with the
integral equation system Eq. (5.1.1).

The modes causing a D4 ⋉ T 2 Hopf bifurcation for a system of equations can be
written as

φ1 = qϕ1, φ2 = qϕ2, φ3 = qϕ3, φ4 = qϕ4, (5.1.9)

where ϕj represent theD4⋉T 2 scalar wave modes given in Eq. (3.3.2), and q represents
the normalized right nullvector of the Fourier-Laplace transformed linear system at
criticality

L (kc, iωc) q = 0, q̄T q = 1, (5.1.10)

The first order solution is then written as

u1(x, t) =
4∑

j=1

(
Ajφj + Ājφ̄j

)
= q

4∑
j=1

Ajϕj + q̄
4∑

j=1

Ājϕ̄j.

(5.1.11)

For this, we consider the amplitudes to be only functions of the long time scale τ = ϵ2t,
excluding the long spatial scale χ and the intermediate time scale θ. Determining the
higher order perturbations will result in the sequence of equations

Lu1(x, t) = g1(u0) = 0

Lu2(x, t) = g2(u0, u1)

Lu3(x, t) = g3(u0, u1, u2),

(5.1.12)

with each order requiring the solution to a 6 component linear system. Fortunately,
all of the hard work in separating the scales of the integral terms was performed in
the scalar model, and Liley’s model can be expressed in terms of those results. The
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second order equation will have

g2 =



−ηe ∗
(

h1
eI

1
ee

|heq
ee−hr

e|
+

h1
eI

1
ie

|heq
ie−hr

e|

)
−ηi ∗

(
h1
i I

1
ei

|heq
ei−hr

i |
+

h1
i I

1
ii

|heq
ii −hr

i |

)
γ2eM

0
ee(h

1
e)

2 + γ1eM
1
eeh

1
e

γ2iM
0
ie(h

1
i )

2 + γ1iM
1
ieh

1
i

γ2eM
0
ei(h

1
e)

2 + γ1eM
1
eih

1
e

γ2iM
0
ii(h

1
i )

2 + γ1iM
1
iih

1
i


, (5.1.13)

where we have introduced the notation γ2j = S ′′
k (h

0
k)/2, and the Mn

jk operators are
simply the Mn operators from the scalar analysis (Eq. (4.3.9)) with indices added for
the generating and receiving populations, i.e.,

M0
jk = ηjk ∗Kjk⊗,

M1
jk = 0,

M2
jk = (tηjk ∗Kjk + ηjk ∗ tKjk)⊗

∂

∂τ
,

(5.1.14)

noting the drastic simplification that comes with ignoring the long space and inter-
mediate time scales at this stage. The M2

jk operator shows up in the next order
equation.

The right hand side for the third order equation is

g3 =



−ηe ∗
[(

I2ee
|heq

ee−hr
e|
+

I2ie
|heq

ie−hr
e|

)
h1e +

(
I1ee

|heq
ee−hr

e|
+

I1ie
|heq

ie−hr
e|

)
h2e

]
−ηi ∗

[(
I2ei

|heq
ei−hr

i |
+

I2ii
|heq

ii −hr
i |

)
h1i +

(
I1ei

|heq
ei−hr

i |
+

I1ii
|heq

ii −hr
i |

)
h2i

]
M0

ee (2γ
2
eh

1
eh

2
e + γ3e (h

1
e)

3) + γ1eM
2
eeh

1
e

M0
ie (2γ

2
i h

1
ih

2
i + γ3i (h

1
i )

3) + γ1iM
2
ieh

1
i

M0
ei (2γ

2
eh

1
eh

2
e + γ3e (h

1
e)

3) + γ1eM
2
eih

1
e

M0
ii (2γ

2
i h

1
ih

2
i + γ3i (h

1
i )

3) + γ1iM
2
iih

1
i


, (5.1.15)

with γ3j = S ′′′(h0j)/6. To help parse the meaning, it is useful to keep in mind that
superscripts on variables are denoting a perturbation order, and that powers have
been written with explicit brackets consistently.

Also to note with Liley’s model, we have not included a parameter that involves
distance from the bifurcation (i.e., δ in the scalar analysis), and this is because we
are interested in computing the normal form coefficients a1,2,3,4 that determine the
criticality and stability of the branching solutions. This can be thought of as looking
at the parameter independent normal form. Criticality and stability can be obtained
by analysis at the bifurcation point, similar to setting δ = 0 in the scalar model.
An unfolding parameter β can then be added in afterwards with the assumption
β ∝ p − pc, where p is an arbitrary parameter in Liley’s model, and pc its value at
criticality.

Since u1 ∈ kerL, the Fredholm Alternative must be satisfied for each order as
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well. To apply the Fredholm alternative, we must define an inner product

⟨u, v⟩ = k2cωc

8π3

∑
j

∫
Λ

dx1dx2dt ūj(x, t)vj(x, t) =
k2cωc

8π3

∫
Λ

dx1dx2dt ū
T (x, t)v(x, t),

(5.1.16)
with Λ = [0, 2π/kc]

2 × [0, 2π/ωc] as in the scalar case. From Eq. (5.1.16), we can
determine the adjoint operator L∗. The adjoint turns out to be simply the transpose
of the original operator with connectivity kernels evaluated at negative time

L∗ =



L∗
11 0 L∗

13 L∗
14 0 0

0 L∗
22 0 0 L∗

25 L∗
26

L∗
31 0 1 0 0 0

0 L∗
42 0 1 0 0

L∗
51 0 0 0 1 0

0 L∗
62 0 0 0 1



T

(5.1.17)

with the components

L∗
11 = 1 +

(
I0ee

|heqee − hre|
+

I0ie
|heqie − hre|

)
ηe(−t)∗

L∗
13 =

h0e
|heqee − hre|

ηe(−t)∗

L∗
14 =

h0e
|heqie − hre|

ηe(−t)∗

L∗
22 = 1 +

(
I0ei

|heqei − hri |
+

I0ii
|heqii − hri |

)
ηi(−t)∗

L∗
25 =

h0i
|heqei − hri |

ηi(−t)∗

L∗
26 =

h0i
|heqii − hri |

ηi(−t)∗

L∗
31 = −γ1eηee(−t) ∗Kee(x,−t)⊗

L∗
42 = −γ1i ηie(−t) ∗Kie(x,−t)⊗

L∗
51 = −γ1eηei(−t) ∗Kei(x,−t)⊗

L∗
62 = −γ1i ηii(−t) ∗Kii(x,−t)⊗

(5.1.18)

This has the useful property that in Fourier-Laplace space, it is simply the conju-
gate transpose of the matrix L defined in Eq. (5.1.7). We define p as the nullvector of
the Fourier-Laplace transform of this adjoint operator, which can thus be written as

L̄T (kc, iωc)p = 0. (5.1.19)
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The Fredholm Alternative then manifests itself as requiring

⟨pϕj, g
n⟩ = 0 (5.1.20)

for each of the nullspace elements (j = 1 . . . 4), for each order of equation (n =
1, 2, . . .).

As mentioned before, this is exactly the same procedure as was performed for the
scalar model, now complicated by dealing with 6 simultaneous equations rather than
1. This can only be carried out numerically, so specific application of this method is
deferred to Appendix B.1 with results simply stated in Sections 5.2, 5.3.

5.1.3 Simulation

An important tool for the analysis of complicated models is the ability to perform
direct numerical simulation of the model equations. In fact, a large portion of time
was spent in this thesis developing simulation tools using state-of-the-art algorithms
for the PDE version of Liley’s model. This section will describe the basic algorithms
used in creating a scalable simulation code for numerical simulation of Eq. (2.4.6).
Details of how the code is structured to incorporate everything discussed here is left
to Appendix B.3.

Spatial discretization

Approximating the spatial derivatives by finite difference (FD) approximations will al-
low the continuous system to be discretized into an arbitrarily large finite dimensional
system. We take a regular square grid with equally spaced nodes

xj,k =

[
jh

kh

]
,

with h the grid spacing. Taking centered differences in both spatial dimensions allows
the Laplacian to be approximated as the truncation of

∇2ϕ(xj,k, t) =
ϕ(xj−1,k,t)+ϕ(xj+1,k,t)+ϕ(xj,k−1,t)+ϕ(xj,k+1,t)−4ϕ(xj,k,t)

h2 +O(h2).
(5.1.21)

On a square grid with periodic boundary conditions in either direction, we order the
nodes as

X = (x0,0, . . . ,x0,N−1,x1,2, . . . ,x1,N−1, . . .)
T (5.1.22)

The resulting node connectivity matrix will then appear as the light colouring in
Figure 5.1.

Considering all 14 of the dynamical quantities at each node, we choose a grid-
based ordering scheme, which allows us to hold our view of the large-scale coupling,
but we can also consider the smaller scale coupling determined by the actual model
Eq. (5.1.4). This gives us an overall view of the coupling in the discretized system, the
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Figure 5.1: Coupling for Liley’s model on a 3x3 grid with periodic BC. Grid-based
ordering of the 14 components in Liley’s PDE (dark) overlaid on the grid coupling
(light). The result is a very sparse structure of the Jacobian.

black squares in Figure 5.1, which will reflect the structure of the Jacobian. Though
visualized for only a 3x3 grid, the sparsity of this system is apparent, and is exploited
for parallel computation for larger grids.

Distribution through parallel domain decomposition

As we take more and more grid points, computation on the discretized system will take
longer and longer. Splitting up the domain into various pieces that can be worked
on separately by different processors will become advantageous. The catch is that
since our grid points do have a local coupling to their neighbours, it is required that
points on the boundaries of processor subdomains be communicated to the relevant
neighbouring processors that use them in computing the vector field or Jacobian.
These coordinates whose actual values are on another processor are called ghost nodes,
and this situation is visualized as the coloured squares in the discrete grid of Figure
5.2. The red dots represent the grid points local to a specific processor, with the other
colours the relevant ghost points.

Implementing this discretization and distribution is straightforward in an MPI
code, however, we have made use of a particular C library where this is standard
procedure. That library is the Portable Extensible Toolkit for Scientific Computation
(PETSc) [2], which is intended to provide useful tools for the numerical solution of
PDEs using a distributed computing environment. More specifics of the structure of



92 5.1. Preliminaries

Figure 5.2: A regularly spaced grid on a square domain, split into multiple processors.
The red dots represent grid points local to a particular processor. In order for this
processor to compute a Laplacian according to Eq. (5.1.21), they must contain ghost
nodes that are communicated from the local points on neighbouring processors.

the PDE code can be found in Appendix B.3.

Treatment as a finite dimensional system

With the continuous domain discretized into a square periodic grid, the PDE system
is effectively a high dimensional dynamical system

∂tU
D = FD(Ud, A), FD : R14N2 × R32 → R14N2

(5.1.23)

for UD(t) ∈ R14N2
the set of all dynamical quantities, and A ∈ R32 the set of all

parameters.
The treatment as a finite dimensional dynamical system may commence as in

Section 3.1, but some algorithmic concerns must be taken into account due to the
potentially large system size. The main problem that arises is the storage of, and
solution to, systems involving the Jacobian. The specific algorithms we use for com-
putations involving the Jacobian are listed in Table 5.1.

All of the algorithms mentioned in the table are provided either by PETSc, or its
sister library, the Scalable Library for Eigenvalue Problem Computations (SLEPc) [8].
We provide our own schematic of the relative hierarchy of classes in these libraries in
Appendix B.2. The PETSc/SLEPc combination cover all aspects of computation we
wish to perform, but we now make a special note on computations regarding periodic
orbits.
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Problem Algorithm

Solving a linear system GMRES [10], preconditioned with incomplete LU
factorization of order k (ILU(k)) [9]

Computing eigenvalues Krylov-Schur iteration [12]

• Largest real part by shift
• Largest magnitude by straight application
• Target eigenvalues by shift-invert methods

Solving nonlinear system Newton iteration with linesearch [5]; Linear systems
solved as above

Table 5.1: Useful algorithms for performing certain computations on large, sparse sys-
tems. All of these algorithms are available in the PETSc/SLEPc distributed software
libraries.

5.1.4 Periodic orbit computations

To refresh, the linear system to be solved in computing a periodic orbit was written
in Section 3.4.4:

g(U, β) =

[
Ud − ϕd(Ud, T, α)

P (Ud, T )

]
,

∂Ug(U, β) =

[
I − ∂Udϕd(Ud, T, α) −∂tϕd(Ud, T, α)

∂UdP ∂TP

]
,

((3.4.4) revisited)

with notation updated to our discretized viewpoint. The problem with this lies in the
∂Udϕ term. As this can be thought of as “the derivative of the flow at time T , with
respect to initial condition u,” it becomes apparent that this can be a dense matrix,
i.e., small localized perturbations in the initial conditions can possibly influence the
entire system over the course of the period. Changing a single component in the initial
condition can affect all components by time T. Even with the sparse coupling of our
system in Figure 5.1, this is the case.

For a large grid, split onto multiple processors, dealing with dense matrices is
not feasible. The solution to this problem comes from looking at the first variational
equation

v̇ = ∂uf
∣∣
u(t)
v. (5.1.24)

Keeping in mind that the ∂Ug matrix in Eq. (3.4.4) is multiplied by the vector
[∆u,∆T ]T , we can find that the product ∂uϕ(u, T, α)∆u can be approximated by

v(T ) such that v(0) = ∆u. (5.1.25)
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Since we already use iterative (matrix-free) algorithms within PETSc/SLEPc,
these can simply be turned to this new view where we do not form the matrix ex-
plicitly, but rather just have the effect of the matrix multiplication. This approach
to periodic orbit computation (and its extension to continuation) was pioneered by
Sanchez et al. [11] for use with Navier-Stokes flows.

5.1.5 Initialization of D4 ⋉ T 2 modes

One practical consideration for the simulation of the D4 ⋉ T 2 symmetric waveforms
in the multicomponent systems is generating initial conditions to be used that can be
compared with the analysis presented above. In general, the numerical computation
of the the basis for the nullspace (i.e., the bifurcating eigenmodes) will be different
from the basis given in Eq. (3.3.2). The eigenmodes in the basis will be some unknown
linear combination of the eigenmodes in Eq. (3.3.2). This section resolves that issue
by taking the dispersion relation viewpoint, and determining initial conditions for
each of the five D4 ⋉ T 2 symmetric wave modes from there.

Considering the PDE system Eq. (5.1.4), with a complex nullvector Q at the
bifurcation point, i.e., (

iωcI − ∂̂UF (kc)
)
Q = 0, (5.1.26)

we can use Eq. (5.1.9) and the amplitude relations of Table 3.1 to obtain real-valued
expressions for each of the 5 branching modes. These are U(x, t)− U0 ∝

TR : Re(Q) cos(ωct+ kcx1)− Im(Q) sin(ωct+ kcx1),

SR : 2
[
Re(Q) cos(ωct) + Im(Q) sin(ωct)

]
cos(kcx1),

TS : Re(Q)
(
cos(ωct+ kcx1) + cos(ωct+ kcx2)

)
−

Im(Q)
(
sin(ωct+ kcx1) + cos(ωct+ kcx2)

)
,

SS : 2

[
Re(Q)

(
cos kcx1 + cos kcx2

)
cosωct−

Im(Q)
(
cos kcx1 + cos kcx2

)
sinωct

]
AR :

[
Re(Q)

(
cosωct− sinωct

)
,+Im(Q)

(
cosωct+ sinωct

)]
×(

cos kcx1 + sin kcx1 + cos kcx2 + sin kcx2
)
.

(5.1.27)

These are written with their time dependence because these expressions can be
used either when Q is obtained from the PDE system, or even if Q is taken from
the integral version of the model, i.e., we use q from Eq. (5.1.9). For initialization
of a PDE simulation, it is sufficient to take t = 0, however for the (delayed) integral
version of the model, an initial history needs to be supplied, and the time dependence
of these solutions becomes useful.

The above neglects the actual amplitudes of the solutions, which is reasonable
because the numerical normal form analysis does not reveal a precise value for the
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unfolding parameter. Without a value for the unfolding parameter, the scaling fac-
tors that would make Eq. (5.1.27) equalities are unable to be obtained. These are
thus mostly useful in generating the correct form of the bifurcating wavemodes, with
Q containing information about the relative amplitudes and phases of the various
components in the system.

What can be done, in principle, is finding one of the periodic solutions near the
bifurcation, and using the scaling factor to give an approximation to a0 using the
relevant entry of Table 3.1. With an approximation to a0, the amplitudes of all of the
other periodic solutions can be approximated, so that even with unstable branches
we may be able to obtain reasonably close estimates for the periodic solutions, which
can then be refined to the actual solutions.

Now that we have covered how all of the methods generalize to Liley’s model, both
with continuous and discretized space, we move on to the analysis of parameter sets.

5.2 Parameter set I

5.2.1 Origin

The first parameter set we are going to apply our ideas to are taken from Bojak
& Liley [4] where they are used to investigate the generation of oscillations with a
40Hz component. This parameter set was taken from the set of 73,454 physiologically
admissible parameter sets that were determined by Bojak & Liley [3], and is displayed
in Table 5.2.

In [4], Bojak & Liley perform some SHE and spatially homogeneous periodic or-
bit continuations in two different parameters: the inhibitory postsynaptic potential
amplitudes (simultaneously) Γie,ii → r1Γie,ii, and the local inhibitory-inhibitory con-

nectivity Nβ
ii → r2N

β
ii . Their results are reproduced in Figure 5.3. And we make note

of the idea of a spatially homogeneous periodic orbit, or SHPO.
From there they move on to show how nonzero wave modes will undergo Hopf

bifurcation before spatially homogeneous modes (i.e., dynamic Turing bifurcation),
as shown in Figure 5.4. They do not perform any analysis of this bifurcation, but
instead perform some numerical simulations of Eq. (5.1.4) just beyond the bifurcation
point to show the emergence of gamma-band (∼40Hz) hot spots in a sharp transition
just beyond the bifurcation point. The hot spots occur spontaneously from random
initial conditions, with different hot spots shown to exhibit phase correlations among
each other.

While the critical frequency at bifurcation suggests periodic solutions with alpha
frequency (∼13 Hz), the branching solutions seem to be subcritical and the increase
through bifurcation produces a discontinuous jump to large amplitude oscillations
with a 40 Hz frequency. This is shown by computing power spectra of the numerical
simulations before and after the bifurcation as in Figure 5.5.
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Parameter Value Units Parameter Value Units

hre -72.293 mV Nα
ee 3228.0 –

hri -67.261 mV Nα
ei 2956.9 –

τe 32.209 ms Nβ
ee 4202.4 –

τi 92.260 ms Nβ
ei 3602.9 –

heqee 7.2583 mV Nβ
ie 443.71 –

heqei 9.8357 mV Nβ
ii 386.43 –

heqie -80.697 mV v 116.12 cm s−1

heqii -76.674 mV 1/Λ 1.6423 cm

Γee 0.29835 mV Smax
e 66.433 s−1

Γei 1.1465 mV Smax
i 393.29 s−1

Γie 1.2615 mV µe -44.522 mV

Γii 0.20143 mV µi -43.086 mV

γee 122.68 s−1 σe 4.7068 mV

γei 982.51 s−1 σi 2.9644 mV

γie 293.10 s−1 pee 2250.6 s−1

γii 111.40 s−1 pei 4363.4 s−1

Table 5.2: Parameter set PS1 for Liley’s model. This parameter set was taken
originally from Bojak & Liley [4] where oscillations with a 40Hz component were
studied. This is also the principle parameter set used in our verification and testing
of the PDE simulation code MFM [7].
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5.2.2 Building on previous work

Now comes the time to build on the analysis performed in [4]. First we verify that
our numerics are indeed consistent with those that were used in the paper. We check
three things:

1. Our implementation of the spatially homogeneous dynamics in Auto-07p is con-
sistent, by comparing continuation of equilibria and periodic solutions in r2 as
in the right panel of Figure 5.3.

2. Our PETSc code for the discretized PDE system is consistent, by

(a) comparing its spatially homogeneous behaviour to the right panel of Figure
5.3,

(b) confirming that we see a dynamic Turing bifurcation for r2 ≲ 1.047, and
(c) confirming that our temporal power spectrum of simulation behaves as in

the right panel of Figure 5.5.

3. Our Maple implementation for dispersion relation calculations is consistent, by
comparing our least damped mode to the right panel in Figure 5.4.

All three turn out to give the expected results, which we elaborate on in the next
subsections and Section B.4.

Results from discretized PDE viewpoint

Our PETSc simulation code is capable of performing parameter continuation of SHE
and SHPO. Thus, it can reproduce the equilibrium curve and the top of the SHPO
curve in the right panel of Figure 5.3. Numerically computing the eigenvalues during
the continuation of the SHE reveals a dynamic Turing bifurcation occurring for some
r2 ∈ [1.044, 1.045]. The eigenvector found to cause this bifurcation has a structure
as displayed in Figure 5.6. It is important to recall that for the square periodic
domain, we expect to see the bifurcating modes appear in quadruplets. To observe
this numerically, with the Krylov-Schur iterative algorithm, the tolerance must be set
finer than usual defaults. This is reflected in the relevant runfile for the thesis’ code
repository.

Perturbing by the real part of the eigenvector in Figure 5.6, we find that the
perturbations do in fact grow. After some time the formation of gamma frequency
oscillations and hot spots do emerge as described in [4]. After a short amount of time,
we observe the hotspot form and produce propagating waves radially outward. After
a longer amount of time, the hotspots become spiral waves, and eventually the whole
domain becomes engulfed in spiral-like waves. Temporal snapshots of these cases are
shown in Figure 5.7, with attention drawn to the black boxes.

Next, we compute the frequency power spectrum of this simulation in one second
intervals around three of the temporal evolution events previously described. For the
simulation, we generate a time series by averaging the values from a small region (the
black squares in Figure 5.7). The simulation is run over 4 seconds, and sampled at
1000 Hz. For the power spectra, we compute the discrete Fourier transform (DFT) of
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Figure 5.6: Spatial structure of one of the modes causing the left dynamic Turing
bifurcation for PS1. The top row is the real part, and bottom imaginary, for six
components of the eigenvector computed just beyond the dynamic Turing bifurcation
with r2 = 1.045. Computed numerically with Krylov-Schur iteration, the algorithm
does not produce the exact modes used in analysis, rather an undetermined linear
combination. The algorithm does return 3 additional complex conjugate pairs of
vectors, with eigenvalues that match to 7 digits. These eigenvalues are

λ ≈ 4.934091× 10−5 ± (8.34590298× 10−2)i [1/ms].

the discrete time series in the intervals i) [0, 1], ii) [1.75, 2.75], iii) [2.75, 3.75] (seconds)
with the resulting power spectrum displayed in Figure 5.8.

Finally, we look at the upper branch of the SHPO. Even though we have precise
information about the period of oscillation along the branch, seen in Figure 5.9, we
compute a power spectrum in the same way as was done in the general simulation. The
time series and spectrum are shown in Figure 5.10. Comparing this to the separate
spectra of the simulation, we see slight difference in the first region when the hot spots
are forming, and no significant difference as the simulation progresses.

Perturbation by (one of) the principal bifurcating modes has the capacity to pro-
duce the large amplitude gamma hot spots that were observed from random initial
conditions in Bojak & Liley [4]. From this we can conclude that the square symmetric
bifurcating modes of the principal bifurcation should all be subcritical. To check this,
we perform the normal form computation based on bifurcation from the dispersion
relation.

Results from dispersion relation viewpoint

We apply our continuation of continuous dispersion relations (described in Section
3.4.5) to determine the value of the principal dynamic Turing bifurcation to be r2 ≈
1.04453. This was performed in a Maple code, which can be used to refine this value
to arbitrary precision. The least damped branch of the continuous dispersion relation
is depicted in Figure 5.11, consistent with Figure 5.4.
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1:
t = 0ms t = 4ms t = 8ms t = 12ms t = 16ms t = 20ms t = 24ms t = 28ms

2:
t = 2250ms t = 2254ms t = 2258ms t = 2262ms t = 2266ms t = 2270ms t = 2274ms t = 2278ms

3:
t = 3250ms t = 3254ms t = 3258ms t = 3262ms t = 3266ms t = 3270ms t = 3274ms t = 3278ms

Figure 5.7: Perturbing with the unstable eigenmode from Figure 5.6, the time evo-
lution of the solution (he pictured) goes through stages. 1 : After some time of slowly
increasing amplitude, localized hotspots of large amplitude emerge in the upper left
corner. Time t is measured relative to this first frame. 2 : The radially propagating
waves give way to spiral waves. 3 : The waves throughout the domain break up even
more, giving even finer spatial structure.
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Figure 5.8: Power spectra for 3 time intervals related to the snapshots shown in
Figure 5.7. The time series are generated by averaging over the black box regions in
Figure 5.7, at 1 ms intervals. The power spectra are obtained by DFT of the discrete
time series, as described in the text.
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Figure 5.10: Power spectrum for spatially homogeneous periodic solution at r2 =
1.045. The time series was generated by sampling the solution at 1 ms intervals (1000
Hz) for 1 s. The power spectrum is obtained by DFT of the discrete time series, as
described in the text.
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Parameter Left Value Right Value

r2 1.04453 2.84769

Criticals

kc 0.679987 cm−1 2.56537 cm−1

ωc 0.0833676 ms−1 0.348455 ms−1

Coefficients

a1 (0.34181− 1.55754i)× 10−3 (−3.20099 + 2.93132i)× 10−5

a2 (1.11877− 2.76280i)× 10−3 (−3.20992 + 2.99307i)× 10−5

a3 (1.55738− 4.40715i)× 10−3 (−6.46250 + 5.92864i)× 10−5

a4 (0.82736− 3.27429i)× 10−3 (−6.55619 + 5.89367i)× 10−5

Region: 1 21(-)

Table 5.3: Characterization of the dynamic Turing bifurcations with D4 ⋉ T 2 sym-
metry. The normal form coefficients result in branching diagram 1 at the left point,
and branching diagram 21(-) at the right point.

From the determination of the precise location of the principal bifurcation point,
the normal form coefficients, and thus the branching diagrams, can be computed using
the method described in Section 5.1.2, and detailed in Appendix B.1. This is done
for both ends, with results summarized in Table 5.3.

Putting together the information from both the PDE code and the normal form
analysis allows us to obtain a more complete picture of r2 dependent dynamics for
parameter set PS1. This picture is presented in Figure 5.13, where the branching from
the principal bifurcations is added in a qualitative rather than quantitative manner.

The unstable subcritical nature of the branches at the left bifurcation point have
made our attempts at picking up all of the space dependent periodic solutions fail.
We had originally assumed that the right bifurcation point would have the same
unstable subcritical branching structure, as we could not yet (historically) compute
the normal form coefficients for these bifurcations. With that in mind, we moved to a
new parameter set, which contains a supercritical Hopf bifurcation in its homogeneous
dynamics. Assuming that a nearby D4 ⋉ T 2 Hopf bifurcation would have similar
behaviour, we moved to parameter set PS2, looking first at the problem numerically.
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Figure 5.13: SHE and homogeneous PO in the r1 continuation of the parameter set
PS1. The left zoom shows that the principle dynamic Turing bifurcation produces
only subcritical D4 ⋉ T2 symmetric wave modes similar to the nearby subcritical ho-
mogeneous Hopf. The right zoom shows all D4⋉T 2 modes branching supercriticaly, in
contrast to the nearby homogeneous Homogeneous. Note that the branching diagrams
from the principal bifurcations are qualitative and do not reflect the actual amplitudes
of D4 ⋉ T 2 wave modes.

5.3 Parameter set II

5.3.1 Origin

This parameter set (PS2) was part of the set of the 73,454 parameter sets discussed
in [3]. While aside from satisfying the physiological constraints that the original
paper required, we are unaware of any further analysis performed on this particular
set. In general, recall that the database of 73,454 physiological parameter sets was
analyzed by Frascoli et al. [6] in an attempt to determine statistics of the nonlinear
behaviours. For this thesis, this particular parameter set was chosen because the
homogeneous dynamics exhibit a supercritical Hopf bifurcation. In contrast to the
previous parameter set, we thought it may be easier to show branching solutions that
are supercritical and potentially stable.

The numerical results in this section were originally reported (in part) in van Veen
& Green [13], and the parameters are given in Table 5.4.

5.3.2 Building on previous work

As already mentioned, the only previous work done on this particular parameter set
was in determining its relevance to physiology and as a piece of a larger statistical
analysis. This leaves us quite open ended in how we will proceed. The first thing we
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Parameter Value Units Parameter Value Units

hre -71.3473 mV Nα
ee 4129.3102 –

hri -78.2128 mV Nα
ei 1884.2588 –

τe 112.891 ms Nβ
ee 4204.8457 –

τi 116.4642 ms Nβ
ei 2867.3399 –

heqee 6.0551 mV Nβ
ie 987.9069 –

heqei -16.8395 mV Nβ
ii 210.0476 –

heqie -88.0656 mV v 251.4 cm s−1

heqii -88.6666 mV 1/Λ 3.6643 cm

Γee 0.3917 mV Smax
e 69.4 s−1

Γei 1.4019 mV Smax
i 320.9 s−1

Γie 1.4707 mV µe -40.9723 mV

Γii 1.4264 mV µi -42.5412 mV

γee 551.6 s−1 σe 4.2276 mV

γei 912.9 s−1 σi 2.1897 mV

γie 258.5 s−1 pee 1–10 s−1

γii 96.7 s−1 pei 4.3634 s−1

Table 5.4: Parameter set PS2 for Liley’s model. This parameter set was taken
originally from a set of 73,454 physiologically admissible parameter sets that were
determined by Bojak & Liley [3].
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parameter set undergoes a pair of fold bifurcations before a supercritical Hopf bifur-
cation to alpha frequency oscillations.

do is a continuation of SHE in the parameter pee, to give an idea of the state space in
response to external excitatory forcing. This continuation is displayed in Figure 5.14.

Normal form analysis

Turning our view to the spatial dependence and dispersion relation, we show that the
dynamic Turing bifurcation occurs before the homogeneous Hopf bifurcation, char-
acterized by the entries in Table 5.5, with dispersion relation shown in Figure 5.15.
The normal form coefficients determine that we have branching diagram 21(-), the
same as the right point in PS1. This branching diagram has all modes bifurcating
supercritically, with alternating and travelling rolls being stable.

With this in mind, we turn to simulation, trying to find the stable branches that
emerge here. We are not able to successfully pick up either the travelling rolls or
the alternating rolls to the right of the bifurcation point. Spatially inhomogeneous
perturbations about the SHE at pee = 4.95 (for example) move very quickly away
from the upper SHE, and move towards the lower (stable) SHE depicted in Figure
5.14. The homogeneous dynamics seem to overpower the spatially inhomogeneous
dynamics at this parameter value.

However, perhaps if we fix the boundaries of our square domain to the SHE values
of the upper branch, we can at least compute and observe the standing solutions.
This is exactly the approach we took in van Veen & Green [13], and it allows us to
compute a supercritical branch of standing square waves.
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Parameter Value

pcee 4.94304

Criticals

kc 0.363867

ωc 0.0633570

Coefficients

a1 −(3.65403 + 1.92732i)× 10−4

a2 −(1.62484 + 0.93401i)× 10−3

a3 −(2.00397 + 1.20946i)× 10−3

a4 −(7.71473 + 4.34533i)× 10−4

Region: 21(-)

Table 5.5: Characterization of the dynamic Turing bifurcation restricted to D4 ⋉ T 2

symmetry for PS2. The result is region 21(-) from Figure 3.6 where all five periodic
modes bifurcate supercritically, with travelling and alternating rolls being stable.
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Figure 5.15: Continuous dispersion relation for SHE of PS2 at the dynamic Turing
bifurcation with pee = 4.94304.
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should be unstable.

Standing square computation

Since we are unable to produce good enough guesses to find the periodic solutions on
the square periodic domain, we move now to fixed boundary conditions. For a given
pee value in the neighbourhood of the dynamic Turing bifurcation, we fix the field to
the SHE values of the upper branch. This approach has been used by Ashwin et al.
[1], and here it ensures that the system can not move towards the lower stable SHE
branch as we destabilize.

To determine an appropriate system size for this solution, we introduce yet another
way of looking at the system: neutral stability curves. Neutral stability curves are
obtained by computing families of solutions to

det
(
iωI − ∂̂UF ((2πn/L, 2πm/L)

T )
)
= 0. (5.3.1)

They represent the neutrally stable eigenvalues for waves with (n,m) wave numbers.
They can be computed by solving Eq. (5.3.1) for particular pee, L, and (n,m), and
then extended using continuation methods. Neutral stability curves are shown in
Figure 5.16.

If we take L = 23 cm, then we do not see the principal bifurcation at pee ≈ 4.94304,
because the discretization of the dispersion relation does not allow kc ≈ 0.363867.
Instead, the first bifurcation we see corresponds to the (1, 1) wave mode on this
domain. This can be visualized by considering a vertical line in Figure 5.16 with
L = 23 cm. We have chosen this length because the (1, 1) wave mode satisfies the
periodic boundary conditions as well.

The Standing square modes are computed using the algorithm mentioned in Sec-
tion 5.1.4, and then continued in the pee parameter. The resulting branch is displayed
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Figure 5.17: Detailed zoom of bifurcation diagram for PS2 with L = 23 cm. We
compute a branch of standing square solutions emanating from the first bifurcation
point. The red squares show show our computed SS solutions, with the red line an
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in Figure 5.17, with snapshots of a particular solution at pee = 4.95 displayed in
Figure 5.18. The branch is seen to bifurcate supercritically, the same as the SHPO
branch, and all of the predicted D4⋉T 2 symmetric wave modes of the dynamic Turing
bifurcation.
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6.1 Summary

The purpose of this thesis was to try to gain some insight into spatiotemporal solutions
of neural field models in two dimensional space. While the initial hopes and dreams
of the author were grand – to characterize transitions from spatially homogeneous
equilibria to wave solutions and eventually to chaotic solutions – the end result became
scaled back as we realized that the primary transitions were not understood so well.

This thesis enforced a specific symmetry, D4 ⋉ T 2, on the bifurcating solutions,
and developed methods for mapping various neural field models undergoing this bi-
furcation to a previously studied normal form. The restriction to this particular sym-
metry was justified on the basis that it still permits the T 2 (translational) symmetric
components of the Euclidean symmetry E(2) in two dimensional space, allowing for
travelling wave solutions. An additional feature, not discussed in detail in the text, is
that any solutions obtained in the D4⋉T 2 space can be transformed by the remaining
E(2) generator (i.e., O(2) rotations) and obtain new solutions along a group orbit.

In the case of a general scalar neural field model that incorporates spatiotemporal
axonal delays, symbolic expressions for the normal form coefficients were derived.
This is a novel result for delayed neural fields in two dimensional space. While similar
work has been done for the dynamic Turing bifurcation in one dimension (with O(2)
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symmetry [10]), and also for Turing bifurcations in two dimensions (with the Dn⋉T 2

symmetries [2]), analysis of the two dimensional dynamic Turing bifurcation has not
been performed on neural fields with delays before this thesis. With our symbolic
expressions for normal form coefficients, a specific instance of the general model was
then employed to test the results of this analysis, using preexisting simulation software.

For the case of a coupled system of neural field models, which also introduces
dynamics for soma membrane potentials, the method used for the scalar equation is
extended, but can only be carried out numerically. We know of no published work
closer to this than that which was presented, in this thesis, on the scalar model.

Simulation software for a specific multi-population model (Liley’s model) was writ-
ten to be of general use in its simulation, and was turned towards the neighbourhood
of the D4 ⋉ T 2 symmetric Hopf bifurcation. Standing square waves were numerically
computed and continued away from the bifurcation, in the supercritical direction as
predicted by the normal form analysis. The behaviour of the numerical algorithms
during the SS branch computation brings up some questions regarding Liley’s model.

6.2 Discussion of results

To further zoom in on where this research falls, we provide a deeper comparison of
the models and results in this thesis to those in the literature, and discuss how our
approach expands on our understanding of, or extends to, other models.

The form of the integral operator that is used in the models of this thesis

η ∗K ⊗ S◦

generalizes the description of a large number of previously studied neural field models,
allowing them to be written in a single convenient notation. While we can not take
credit for this simple notation, what we can do is claim that our approach and results
can be easily used in homogeneous and isotropic neural field models that were not
studied in this thesis.

6.2.1 Comparisons and extensions

Spike frequency adaptation

The models studied in this thesis are missing a piece that is very much present in
real biological neurons: metabolism. Through an abundance of metabolic processes,
neurons are unable to continuously fire at a high rate, which is referred to as spike
frequency adaptation (SFA). While missing in our analysis, a simple extension that
can model this effect can be introduced. We can consider a neural field with a local
negative feedback component, v

u = η ∗ (K ⊗ S ◦ u− av) ,

v = ηSF ∗KSF ⊗ SSF ◦ u,
(6.2.1)
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with a a coupling coefficient, and ηSF , KSF , and SSF having (potentially) different
forms from their synaptic counterparts.

Note that this extension is known to produce Hopf bifurcations as the principal
instability more readily than the scalar neural field in this thesis. This such modifica-
tion was studied in one dimensional space with space dependent delays by Venkov et
al. [10] which, recall, applies the method that we have extended to two dimensional
space. The analysis in [10] generalized in a very straightforward manner to SFA, and
we expect the same for our D4 ⋉ T 2 normal form results.

SFA has also been studied in two dimensional neural field models without delays.
Examples of this include the study of spiral waves by Laing [6], and square symmetric
waveforms in the more recent book chapter by Ermentrout et al. [4]. While the analysis
in [4] is for square symmetric waves, we note that a specific form for the synapse was
used in their analysis (similar to the single exponential synapse of Eq. (2.3.3)), there
are no symbolic expressions for the normal form coefficients, and again we note that
the model does not incorporate spatiotemporal delays. Our analysis generalizes this
to some extent by allowing for an arbitrary synapse and including spatiotemporal
delay.

To fully generalize the results by Ermentrout et al. [4], we would have to extend
to incorporate the SFA as in Eq. (6.2.1). This seems to be as straightforward in two
dimensional space as in the one dimension. We did not perform this, however, because
our interests were more directed at multiple populations.

A specific type of SFA, called synaptic depression has recently been added to
Liley’s model by Bojak et al. [1]. It adds a slowly varying temporal component to the
the PSP peak amplitudes Γjk. Note that this has been included in this subsection
even though SFA deals with frequency modulation. The reason for this is because in
Liley’s model the PSP peak amplitudes always appear in product with the maximum
firing rates Smax

k (i.e., minimum frequency), so regardless of which one is actually
changing, they can be handled in an equivalent way. The model in [1] can be written
as

hk(x, t) = ηk ∗
(
hrk +

∑
j

heqjk − hk(x, t)∣∣heqjk − hrk
∣∣ Ijk(x, t)

)
,

Ijk(x, t) = ηjk ∗
(
Kjk ⊗

(
Cj(x, t)Sj ◦ hj(x, t)

)
+ pjk

)
,

Cj(x, t) = ηSFA
j ∗KSFA

j ⊗ Sj ◦ hj(x, t),

(6.2.2)

noting that [1] treats the newly introduced variables Cj as having purely local influ-
ence, similar to the inhibitory population in the PDE version of Liley’s model. The
results of Bojak et al. were based on numerical simulation on a square periodic do-
main, looking at space dependent burst suppression. The methods of this thesis are
thus particularly suited to comparison with the results of the modified model. As [1]
is a very recent article, this has not been performed yet.
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Multiple populations

We have already considered the extension to multiple populations in a specific sense
within this thesis. Extending the analysis from the scalar field to Liley’s model in-
volved both the introduction of a second population and additional dynamics for the
soma membrane potentials.

The approach to extending the scalar model to Liley’s model is quite general,
however in this thesis it was presented more from the viewpoint of practicality. That
is, we wanted to study the primary instabilities in Liley’s model, so the notation of
our numerical approach (the short form of Eq. (B.6) for example) was developed with
the sole purpose of being practical with the analysis of Liley’s model.

Multi-population neural field models have existed all the way back to Wilson &
Cowan in the 1970s [11, 12], whose model (generalized to space in Ermentrout &
Cowan [3]) can be expressed as:

ue = ηe ∗ Se ◦ (Kee ⊗ ue +Kie ⊗ ui) ,

ui = ηi ∗ Si ◦ (Kei ⊗ ue +Kii ⊗ ui) ,
(6.2.3)

with single exponential synapses and no spatiotemporal delay. One particular thing
to note about Eq. (6.2.3) is the order of the ◦ and ⊗ operators. This is the reverse of
the order for models studied in this thesis, but it is easily explained. The difference
can be traced to how the population averages are interpreted. With the viewpoint of
“sum connections, and then convert to average firing rate,” then the η ∗S ◦K⊗ order
will come up. With the viewpoint of “convert to average firing rate, and then sum
connections,” then the η ∗K ⊗ S◦ ordering will be present. Neither of these seem to
be the definitive model, and it seems that qualitative behaviour of both variants have
a similar repertoire. In fact, as the nonlinear analysis presented in this thesis relies
on what are essentially Taylor expansions, the analysis could be easily converted to
this other view and the qualitative behaviours of both types could be compared. In
the interest of time, this was not conducted.

One particularly relevant paper (introduced to us only after we had performed all
of our computations) is that of Tass [9]. Tass performs an analysis of Eq. (6.2.3) with
single exponential time scales and no spatiotemporal delays. As the synapse is spec-
ified, he is able to determine a symbolic expression for the frequency at bifurcation.
He goes through the procedure of computing order parameter equations for various
cases, one of which corresponding to square symmetric modes. The resulting equa-
tions (which includes symbolic expressions for all coefficients) seem to be equivalent
to the D4 ⋉ T 2 normal form of Silber & Knobloch, up to some scaling.

Our normal form analysis extends Tass’ work in the following three ways: i) It
incorporates the (biologically relevant) axonal delays into the models, ii) It generalizes
the synapses such that more biologically realistic models can be used (i.e., nonzero
rise time), and iii) It adds a model for soma membrane dynamics to the mix, still
allowing for the square modes to be analyzed (although, numerically).

Perhaps the most relevant comparison between Tass’ work and this thesis can be
stated as follows: Tass determines that the only modes that are possibly stable in the
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square symmetric reduction of the neural field in his work are the TR and AR states.
Even though we are unable to make such a strong statement (our symbolic expressions
for the normal form coefficients are quite difficult to work with analytically) we have
only observed stability for the TR and AR states. The three other modes that are
guaranteed to branch by the Equivariant Hopf Theorem appear to always be stable
in both our scalar field with delay and Liley’s model. It may be possible to show this
result from our symbolic normal form coefficients, however we were unable to achieve
this.

6.3 Conclusions

Scalar field

For scalar neural fields with transmission delay undergoing a pair of dynamic Tur-
ing bifurcations, the emergence of this pair can be visualized through the sigmoid
steepness parameter. For low enough steepness, there will be no such bifurcation, but
increasing through a critical value will create a pair of (reflected) Hopf bifurcations
originating in some region of the normal form coefficient space. In our investiga-
tions, this has always been regions 21/21(-), but may be different for different model
specifics. These regions have all solutions bifurcating supercritically, with travelling
rolls and standing squares (or alternating rolls) being stable. It is likely that the
branches of periodic solutions connect the Hopf bifurcations in this regime.

Increasing sigmoid steepness eventually moves theD4⋉T 2 normal form coefficients
towards regions 1/1(-). These regions have all 5 guaranteed solutions bifurcating sub-
critically and being unstable. The path taken in approaching this region is dependent
largely on the underlying model, i.e., the specifics of the spatiotemporal connectivity
and the synapse, so we may not comment on which regions will be traversed.

As the steepness approaches infinity (a Heaviside firing function) the normal form
coefficients also approach infinity in magnitude in region 1, meaning that the bifur-
cating wave modes will be subcritical and their amplitudes will go to zero. With a
Heaviside firing rate, the condition for a Hopf bifurcation can not possibly be met,
which can be thought of as consistent with a zero amplitude branching structure.

Liley’s model

From the analysis performed, we can only conclude that the temporal dynamics of the
spatially homogeneous modes tell us a lot about the temporal power spectrum in the
regions of instability. This is demonstrated by comparing the frequencies of general
simulation to the frequency of the spatially homogeneous oscillations as in Figures 5.8
and 5.10. This is likely due to the relatively weak spatial coupling that is present in
this particular model.

For Liley’s model, considering the spatial dependence in the analysis has been most
successful from the point of view of determining the precise location and branching of
the principal bifurcation. This provides a means for predicting when small perturba-
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tions will grow to large amplitude waves in the neighbourhood of the bifurcation, i.e.,
we now have predictive power over this phenomena. A key result however, displayed
in Figure 5.13, shows us that the D4 ⋉ T 2 symmetric Hopf modes do not always
branch in the same way (criticality and stability) as the nearby, and related, spatially
homogeneous oscillations.

We suspect that advancing the numerics now to pick up known branching solu-
tions and continue them will shed light on further bifurcations leading to the more
complicated dynamical regimes like the hot spots.

General

The above were concerned strictly with the results as they pertain to the models,
without any mention of reality. To be explicit, this thesis contained no attempt to
directly match experimental data. However, we can relate the results in a qualitative
sense to experimental observations. Muller et al. observe propagating activity waves
by voltage sensitive dye (VSD) imaging the cortex of awake monkey [8]. The obser-
vations provide the first concrete evidence of propagating activity in the cortex of an
awake, conscious being. The travelling wave mode that is observed resembles that of
a travelling roll, as with cortex waves in past work on anaesthetized subjects (Muller
& Destexhe [7]).

The results of Muller et al. are consistent with our calculations showing that the
TR modes appear to be one of the two square symmetric modes that can be stable.
We suspect that in the absence of the square periodic symmetry, the AR state may
always be unstable as well, leaving us with stable TR solutions for some parameter
values. This is not to say that the TR solutions will be the only possible solutions,
rather that from the analysis of this thesis, and the recent experimental results, they
should be the primary target for expanding on our results.

6.4 Further work

The previous sections alluded to further work that could be conducted to gain a
better understanding of how the results of this thesis exist among existing results.
This section now presents the directions that will advance results.

Tiling symmetries

Since dynamic Turing bifurcation plays an important role in neural systems with long
range excitatory connections and time delays, it should be of principal importance
to understand its behaviour in a more varied sense. Restrictions to the other two
dimensional tiling symmetries will add to the picture presented here. The stability of
the square symmetric modes in this thesis refers only to stability in the square periodic
lattice. It will be very beneficial to compare results among the tiling symmetries, to
see if there is a particular mode that consistently dominates the others. My prediction:
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Travelling rolls are king.

Numerical methods

With the now known branching behaviour, numerics can be tuned around attempting
to pick up small amplitude branching solutions and performing continuation to larger
amplitude solutions. This process is sure to reveal what methods should be used for
the general simulation of the scalar delayed field and Liley’s model.

Continuation of the branch of standing square solutions using [5] posed a very
difficult problem numerically. Using the ideas presented in Section 5.1.4, we found
that the nonlinear residuals were not decreasing quadratically as we would expect for
Newton’s method. In fact, we required the use of a line search method to adjust the
length of our Newton updates, and even with this our approach would not converge
beyond a lower limit.

This presents a mystery to us, and we think the solution likely lies in one of the
possibilities:

• The convergence of the periodic orbit refinement is limited by the spatial dis-
cretization error, or

• The numerics for discretizing and time stepping the model are inadequate.

The first point can be addressed simply by adjusting the spatial discretization and
comparing convergence results between them. The second point would require a little
more work, perhaps writing a pseudospectral code to apply in the neighbourhood of
the bifurcations of interest.

Symmetry breaking

Restriction to the tiling symmetries with length and time scales of the principle bifur-
cation is just the first step. The nature of the dynamic Turing bifurcation, however,
is that there can be many (up to infinite) bifurcations with different scales in a small
region. An important question then becomes: How do these bifurcations at different
scales interact among each other? Especially, since we have enforced a particular
symmetry on the principal bifurcation.

Radial and rotating waves

Simulation of Liley’s model, as demonstrated in Figure 5.7, shows the formation of
localized sources of activity which, due to the periodic boundary conditions, end
up interacting with themselves and creating spiral waves. With periodic boundaries
removed, it is plausible that the localized sources would be radially symmetric, and
their destabilization into spiral waves could be studied from this angle. While there is
currently work on spiral waves in neural fields, the extension to multiple populations
(and Liley’s model) with spatiotemporal delay would be very interesting to see.
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Inhomogeneity, Anisotropy

Of course, the cortex is not homogeneous, nor is it isotropic. That does not mean,
however, that the results of this thesis are useless. Rather, they can form the begin-
nings of more realistic analysis. We now know how to characterize the generation of
square symmetric wave modes. How does their character change when K is slightly
anisotropic? Slightly inhomogeneous? What happens when the axonal delays have
small inhomogeneities or anisotropies? We should try to figure these out!
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A.1 Calculations

A.1.1 Details of separation of scales calculation

For the separation of scales calculation, we use the integral notation of the model as
seen in Eq. (2.3.1) with the operator notation expanded. We first write the model
making explicit the dependence of u on the scaled independent variables χ = ϵx,
θ = ϵt, and τ = ϵ2t leading to

u(x, t, ϵx, ϵt, ϵ2t) =

∫ t

−∞
ds η(t− s)×

×
∫ ∞

−∞

∫ ∞

−∞
dx′1dx

′
2

∫ ∞

−∞
dt′ K(x− x′, s− t′)f ◦ u(x′, t′, ϵx′, ϵt′, ϵ2t′) (A.1)

123
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Taylor expanding (A.1) about the homogeneous equilibrium as in (4.3.6), the integral
equation becomes

u(x, t, ϵx, ϵt, ϵ2t) =
∞∑
i=0

γi

∫
ds η(t− s)

∫∫
dΩ′ ×

×
∫

dt′K(x− x′, s− t′)ui(x
′, t′, ϵx′, ϵt′, ϵ2t′), (A.2)

where here (and throughout this appendix) we omit the limits of integration for sim-
plicity, and use dΩ′ = dx′1dx

′
2.

For the integral part of (A.2), adding and subtracting each of the scaled coordi-
nates in the appropriate place allows us to write

ui(x
′, t′, ϵx′, ϵt′, ϵ2t′) = ui(x

′, t′, ϵx+ ϵx′ − ϵx, ϵt+ ϵt′ − ϵt, ϵ2t+ ϵ2t′ − ϵ2t)

= ui(x
′, t′,χ+ ϵ(x′ − x), θ + ϵ(t′ − t), τ + ϵ2(t′ − t)),

for each separate order of the perturbation solutions. Taylor expanding the last 3
arguments of this leads to

ui(x
′, t′, ϵx′, ϵt′, ϵ2t′) = ui(x

′, t′,χ, θ, τ) +

+ ϵ

[
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

]
ui(x

′, t′,χ, θ, τ) +

+ ϵ2
[
1

2

(
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

)2

+ (t′ − t)
∂

∂τ

]
ui(x

′, t′,χ, θ, τ) +

+O(ϵ3),

(A.3)

where ∇χ = ( ∂
∂χ1

, ∂
∂χ2

)T .

Now the integral terms of (A.2) become∫
ds η(t− s)

∫∫
dΩ′

∫
dt′K(x− x′, s− t′)ui(x

′, t′, ϵx′, ϵt′, ϵ2t′) =∫
ds η(t− s)

∫∫
dΩ′

∫
dt′K(x− x′, s− t′)

{
ui(x

′, t′,χ, θ, τ)+

+ ϵ

[
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

]
ui(x

′, t′,χ, θ, τ)+

+ ϵ2
[
1

2

(
(x′ − x) · ∇χ + (t′ − t)

∂

∂θ

)2

+ (t′ − t)
∂

∂τ

]
ui(x

′, t′,χ, θ, τ) +O(ϵ3)

}
.

(A.4)

Every order of ϵ can be broken down into the convolution notation using ∗ and ⊗,
and to do so requires us to use t′ − t = (s − t) + (t′ − s) to move between the time
scales. Using this, and pulling the ϵ powers out of the integrals, we can continue from
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(A.4)

=

∫
ds η

∫∫
dΩ′

∫
dt′Kui +

+ ϵ

{∫
ds η

∫∫
dΩ′

∫
dt′ (x′ − x)K · ∇χui +

+

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′K

∂ui
∂θ

+

+

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)Kui

}
+

+
ϵ2

2

{∫
ds η

∫∫
dΩ′

∫
dt′K ((x′ − x) · ∇χ)

2
ui +

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′ (x′ − x)K · ∇χ

∂ui
∂θ

+

+2

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)K(x′ − x)K · ∇χ

∂ui
∂θ

+

+

∫
ds (s− t)2η

∫∫
dΩ′

∫
dt′K

∂2ui
∂θ2

+

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′ (t′ − s)K

∂2ui
∂θ2

+

+

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)2K

∂2ui
∂θ2

+

+2

∫
ds (s− t)η

∫∫
dΩ′

∫
dt′K

∂ui
∂τ

+

+2

∫
ds η

∫∫
dΩ′

∫
dt′ (t′ − s)K

∂ui
∂τ

}
+

+ O(ϵ3) (A.5)

noting that the arguments of η, K, and ui remain the same.
From equation (A.5) we can easily read off the convolutions after we have expanded
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terms involving (x′ − x) · ∇χ, resulting in

= η ∗K ⊗ ui+

+ ϵ

{
−η ∗

(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
− (tη ∗K + η ∗ tK)⊗ ∂

∂θ

}
ui +

+ ϵ2
{
1

2
η ∗
(
x21K ⊗ ∂2

∂χ2
1

+ x22K ⊗ ∂2

∂χ2
2

)
+ η ∗ x1x2K ⊗ ∂

∂χ1

∂

∂χ2

+ tη ∗
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+ η ∗ t
(
x1K ⊗ ∂

∂χ1

+ x2K ⊗ ∂

∂χ2

)
∂

∂θ

+
1

2

(
t2η ∗K + 2tη ∗ tK + η ∗ t2K

)
⊗ ∂2

∂θ2

+ (tη ∗K + η ∗ tK)⊗ ∂

∂τ

}
ui +

+O(ϵ)3.

(A.6)

Here is where it makes sense to define the operators Mi according to equation (4.3.9).
Now, take perturbations of u about u0 according to equation (4.3.7), and the result

obtained in equation (A.6), and insert them into equation (A.2) to obtain

ϵu1 + ϵ2u2 ++ϵ3u3 +O(ϵ4) = η ∗K ⊗
∞∑
i=0

γiui

= ϵγ1M0u1 + ϵ2
[
M0(γ1u2 + γ2u

2
1) + γ1M1u1

]
+

+ ϵ3
[
M0(γ1u3 + 2γ2u1u2 + γ3u

3
1)+

+M1(γ1u2 + γ2u
2
1) + γ1M2u1

]
+

+O(ϵ4).

It is possible to define an unfolding parameter δ according to γ1 = γc + ϵ2δ, so
that we can investigate dynamics in the neighbourhood of the bifurcation. Doing so
brings us to the final stage, where we can pull out equations for each order of ϵ

u1 = γcM0u1

u2 = γcM0u2 + γ2M0u
2
1 + γcM1u1,

u3 = γcM0u3 +M0

(
2γ2u1u2 + γ3u

3
1 + δu1

)
+M1

(
γcu2 + γ2u

2
1

)
+ γcM2u1,

(A.7)

which can be rearranged to equation (4.3.8).
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A.1.2 Details of Fredholm alternative inner products

This appendix section details the calculation of the inner products ⟨ϕ1, gn⟩. Note that
we only show the results of inner products using ϕ1 since results with the other basis
functions can be obtained by the same methods.

The first result is as easy as they come. We chose our basis functions to be
orthogonal with respect to the inner product (4.3.11), so that we have

⟨ϕ1, u1⟩ =

⟨
ϕ1,

4∑
i=1

(
Aiϕi + Āiϕ̄i

)⟩
= A1. (A.8)

Next, we have inner products with u21. These are handled easily as well

⟨ϕ1, u
2
1⟩ =

⟨
ϕ1,

(
4∑

i=1

(
Aiϕi + Āiϕ̄i

))2⟩
= 0.

Equality here again comes down to orthogonality relationships of cosine and sine
functions with respect to the defined inner product. The surviving terms in the
expansion of the summation are all orthogonal to the ϕi basis functions. These two
results are applied in the computation of ⟨ϕ1, g2⟩ in equation (4.3.13).

Now with the simple second order restriction computed, we move to the involved
computation of the third order restriction ⟨ϕ1, g3⟩. We start with

⟨ϕ1, g3⟩ = 2γ2η̃K̂⟨ϕ1, u1u2⟩+ γ3η̃K̂⟨ϕ1, u
3
1⟩+ δη̃K̂⟨ϕ1, u1⟩+

+ γc

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)
η̃K̂⟨ϕ1, u2⟩+

+ γc

[
1

2

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)2

+
∂

∂iω

∂

∂τ

]
η̃K̂⟨ϕ1, u1⟩

= 0,

(A.9)

and can quickly apply equation (A.8) to two of the terms. With the help of Maple1

we can also compute

⟨ϕ1, u
3
1⟩ = 3A1

[
|A1|2 + 2

(
|A2|2 + |A3|2 + |A4|2

) ]
+ 6Ā2A3A4,

and for the terms that include u2, we must first calculate that. It is not possible
to calculate u2 directly, but one may assume that it will be a quadratic form of the
complex exponential terms used in the lower order solution

u2 =
∑

l,m,n={0,±1,±2}

Blmne
i(lωct+mkcx1+nkcx2). (A.10)

Inserting this into the second equation in (A.7) permits us to pull out all values of

1Maple 18. Maplesoft, a division of Waterloo Maple Inc., Waterloo, Ontario.
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l m n Blmn/(γ2Clmn)

-2 -2 0 Ā1
2

-2 -1 -1 2Ā1Ā3

-2 -1 1 2Ā1Ā4

-2 0 -2 Ā3
2

-2 0 0 2(Ā1Ā2 + Ā3Ā4)

-2 0 2 Ā4
2

-2 1 -1 2Ā2Ā3

-2 1 1 2Ā2Ā4

-2 2 0 Ā2
2

l m n Blmn/(γ2Clmn)

2 -2 0 A2
2

2 -1 -1 2A2A4

2 -1 1 2A2A3

2 0 -2 A2
4

2 0 0 2(A1A2 +A3A4)

2 0 2 A2
3

2 1 -1 2A1A4

2 1 1 2A1A3

2 2 0 A2
1

l m n Blmn/(γ2Clmn)

0 -2 0 2Ā1Ā2

0 -1 -1 2(Ā1A4 +A2Ā3)

0 -1 1 2(Ā1A3 +A2Ā4)

0 0 -2 2Ā3A4

0 0 0 2(|A1|2 + |A2|2 + |A3|2 + |A4|2)
0 0 2 2A3Ā4

0 1 -1 2(Ā2A4 +A1Ā3)

0 1 1 2(Ā2A3 +A1Ā4)

0 2 0 2A1Ā2

l m n Blmn/(γ2Clmn)

-1 -1 0 undetermined

-1 0 -1 undetermined

-1 0 1 undetermined

-1 1 0 undetermined

l m n Blmn/(γ2Clmn)

1 -1 0 undetermined

1 0 -1 undetermined

1 0 1 undetermined

1 1 0 undetermined

Table A.1: Nontrivial quadratic coefficients Blmn, using Clmn from equation (4.3.20).

Blmn except those for m = 0; l, n = ±1 and n = 0; l,m = ±1 because those lie in the
nullspace of L. Aided again by Maple, we can compute 117 of the 125 components of
Blmn, most of them being 0, by using properties of the Laplace and the Fourier-Laplace
tranform. The results are summarized in Table A.1.

Now that we have computed u2, it is straightworward to determine the remaining
inner products

⟨ϕ1, u1u2⟩ =γ2A1

[
(2C000 + C220)|A1|2 + 2(C000 + C200 + C020)|A2|2

+ 2(C211 + C011 + C000)|A3|2 + 2(C000 + C011 + C211)|A4|2
]

+ 2(C200 + 2C011)Ā2A3A4,



Appendix A. Resources for scalar equation 129

where symmetry properties in the indices of Clmn have been used to combine terms,
and

⟨ϕ1, u2⟩ = B110. (A.11)

The unknown B110 is actually a function of ξ1, ξ2, ξ3, ξ4, and τ .
Inserting all that is needed into equation (A.9), we obtain the equation

0 = a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

) ]
+

+ a4Ā2A3A4 + a5
∂2A1

∂ξ21
+
∂A1

∂τ
+Dγc

(
− ∂

∂ik1

∂

∂χ1

+
∂

∂iω

∂

∂θ

)
η̃K̂B110,

with the ai coefficients and D as given in equation (4.3.19). Applying the chain rule
for the derivatives acting on B110, we can obtain

0 = a0A1 + A1

[
a1|A2|2 + a2

(
|A1|2 + |A2|2

)
+ a3

(
|A3|2 + |A4|2

) ]
+

+ a4Ā2A3A4 + a5
∂2A1

∂ξ21
+
∂A1

∂τ
+
vg
γc

(
−2

∂

∂ξ2
+

∂

∂ξ3
− ∂

∂ξ4

)
B110.

Since B110 is an unknown function, we want to eliminate it. If we average the equation
over the ξ1, ξ2, and ξ3 variables. That is, even though B110 depends on ξ1, ξ2, ξ3, and
ξ4, averages of the form ⟨⟨⟨∂B110

∂ξj
⟩2⟩3⟩4 (with the averages defined as in equation (4.3.18)

for instance) will be independent of ξ2, ξ3, and ξ4, leaving just just τ and ξ1 as the
independent variables.

The result is Eq. (4.3.14). If this method is repeated for ϕ2, ϕ3, and ϕ4, the inner
products will differ, but the final results are Eqs. (4.3.15)-(4.3.17).

A.2 Initialization files for nfSimulator

The initialization files used for simulation of the travelling and alternating rolls solu-
tions in Figure 4.9 were performed with nfSimulator version 2.3.4. The initialization
files for them are provided in the thesis repository
https://bitbucket.org/kegr/uoit_thesis.

https://bitbucket.org/kegr/uoit_thesis
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This appendix provides some additional details for calculations and simulations re-
garding Liley’s model. The notation used in normal form computation section is
consistent with the body of the text, but notation in the numerical section is distinct
for simplicity. The numerical section is essentially that present in Green & van Veen
[6].
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B.1 Calculations

Specific useful calculations that were omitted from the text include the derivation of
the PDE model from the integral system. And the process for computing D4 ⋉ T 2

symmetric Hopf normal form coefficients.

B.1.1 Equivalence of Integral and PDE models

We do not reproduce this calculation here. Rather, we point to sources where similar
calculations were used. We stress again that the equivalence can be shown by taking
Fourier transforms in the infinite domain.

For the temporal operator ∗, Fourier transform in only the time dimension allows
the ηj, ηjk to be written in terms of temporal differential operators on the left hand
side.

For the spatiotemporal operator, Fourier transforming in time and both spa-
tial dimensions will show the equivalence. This is because the Fourier transform
of Eq. (2.4.5) will result in a rational polynomial in the norm of the wave vector and
the temporal frequency. Sufficient details of this calculation are provided in Appendix
B in Liley et al. [8].

B.1.2 Normal form coefficient example

The normal form calculation is not presented in full detail here. Instead, we just
give the ideas that allow us to actually compute the second order solution and the
restriction of the third order equation.

Second order solution

For the second order solution, it is useful to define a short notation, χlmn, as the
matrix

χlmn = diag





η̃e(ilωc)

η̃i(ilωc)

η̃ee(ilωc)K̂ee((m,n)
Tkc, ilωc)

η̃ie(ilωc)K̂ie((m, )
Tkc, ilωc)

η̃ei(ilωc)K̂ei((m,n)
Tkc, ilωc)

η̃ii(ilωc)K̂ii((m,n)
Tkc, ilωc)




. (B.1)



Appendix B. Resources for Liley’s model 133

With this, we define a vector for the quadratic terms evaluated at q (the null vector)

r =



−
(

q3
|heq

ee−hr
e|
+ q4

|heq
ie−hr

e|

)
q1

−
(

q5
|heq

ei−hr
i |
+ q6

|heq
ii −hr

i |

)
q2

g2e(q1)
2

g2i (q2)
2

g2e(q1)
2

g2i (q2)
2


. (B.2)

With this notation, it can be shown that the second order solution will satisfy

u2(x, t) =
2∑

l=−2

2∑
m=−2

2∑
n=−2

Clmne
i(lωct+mkcx1+nkcx2), (B.3)

with Clmn the solution to a matrix equation

L((m,n)Tkc, ilωc)Clmn = Almnr, (B.4)

for L the Fourier-Laplace transformed linear operator, and Almn the scalar quantity
(for a fixed l,m, n) with the same entries as Blmn/γ2Clmn used in the scalar equation
(Table A.1). A difference though, is that we do not have the undetermined terms, as
those were caused by resonant terms that came up from the M1 operator, which has
become identically 0 for our simplified analysis.

Maple makes quick work of computing u2, and we suppress the output, avoiding
the gaze of Medusa. Now that we have the second order solution (still with arbitrary
amplitudes Aj), we move to the applying the Fredholm alternative to the third order
equation.

Third order restriction

The Fredholm alternative applied to the third order perurbation equation can be
rewritten as (for nullvector pϕ1)

⟨pϕ1, g
3⟩ = ⟨pϕ1, χ101v

0 +D2v
2⟩ (B.5)

with the matrix D2

D2 = diag





0

0
∂

∂iω
η̃ee(iωc)K̂ee((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ie(iωc)K̂ie((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ei(iωc)K̂ei((m,n)

Tkc, ilωc)
∂
∂τ

∂
∂iω
η̃ii(iωc)K̂ii((m,n)

Tkc, ilωc)
∂
∂τ




. (B.6)
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vector v0

v0 =



−
(

u2
3

|heq
ee−hr

e|
+

u2
4

|heq
ie−hr

e|

)
u11 −

(
u1
3

|heq
ee−hr

e|
+

u1
4

|heq
ie−hr

e|

)
u21

−
(

u2
5

|heq
ei−hr

i |
+

u2
6

|heq
ii −hr

i |

)
u12 −

(
u1
5

|heq
ei−hr

i |
+

u1
6

|heq
ii −hr

i |

)
u22

2g2eu
1
1u

2
1 + g3e(u

1
1)

3

2g2i u
1
2u

2
2 + g3i (u

1
2)

3

2g2eu
1
1u

2
1 + g3e(u

1
1)

3

2g2i u
1
2u

2
2 + g3i (u

1
2)

3


, (B.7)

and vector v2

v2 =



0

0

g1eu
1
1

g1i u
1
2

g1eu
1
1

g1i u
1
2


. (B.8)

With all of the above considered, the inner product of Eq. (B.5) can be numerically
computed in a short amount of time. The result is an abundance of terms with
numerical coefficients at or below the tolerance of the precision used. Discarding those
negligible terms, we are left with only the Aj combinations present in the D4 ⋉ D2

symmetric normal form, and we can simply read off the normal form values.

B.2 Numerical algorithm descriptions

B.2.1 PETSc overview

Rather than creating our code from scratch, we opted to work with the Portable,
Extensible Toolkit for Scientific Computation (PETSc): an open-source, object ori-
ented library that is designed for the scalable solution and analysis of PDEs [2, 1].
PETSc is written in the C language, and is usable from C/C++ as well as Fortran
and Python. We use PETSc in conjunction with the Scalable Library for Eigenvalue
Problem Computations (SLEPc) [7], for the computation of eigenspectra of equilib-
rium and periodic solutions. Since our implementation uses some features of PETSc
that are recent additions and are still being modified, we use the development version
of both projects.

PETSc is split up into multiple components to address the various problems asso-
ciated with solving PDEs numerically. For our purposes, we treat the DM component,
which handles the topology of the discretization, as the most fundamental, from which
we can easily derive memory allocation and communication for distributed vectors
(Vec) and matrices (Mat). With vectors and matrices, we can now solve linear sys-
tems, such as those that arise in Newton iteration for implicit time-stepping and the
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computation of equilibria and periodic orbits. PETSc’s component for this is called
KSP, and it has numerous iterative solvers implemented, as well as preconditioners,
(PC), to increase convergence rates. For implicit time-stepping, for example, we use
GMRES , preconditioned with incomplete LU (ILU) factorization, combined with
the block Jacobi method [11, 10]. On top of the linear solvers come the nonlinear
solvers, PETSc’s SNES component, which implements a few different methods, such
as globally convergent Newton iteration with line search [4]. Finally, PETSc provides
a timestepping component, TS, to obtain time dependent solutions. Implemented here
are numerous explicit and implicit schemes such as adaptive stepsize Runge-Kutta and
implicit Euler. The implicit schemes make use of the SNES component. A schematic
of the hierarchy discussed here can be found in Fig. B.1.

TS (Timestepping)

SNES (Nonlinear solving)

KSP (Krylov methods) PC (Preconditioning)

Matricies Vectors

DM (Grid management)

PETSc

BLAS      MPI

SLEPc

EPS (Eigenvalue solving)

Application 

Code

Figure B.1: Schematic representation of the components of PETSc and SLEPc used
in our code, and their relative hierarchy.

For our dynamical systems calculations we will frequently need to compute specific
eigenvalues and eigenvectors for system-sized matrices. For this end, we use SLEPc,
which implements iterative eigenvalue solvers using PETSc Vec and Mat distributed
data structures. The component of SLEPc that we use is EPS, which has a few
algorithms for iteratively solving eigenproblems. Its default algorithm is Krylov-Schur
iteration.

B.2.2 Timestepping

We currently use an arbitrary method to time step the discretized equations. This
subsection goes through the process of timestepping with the implicit Euler method.
Since we are aiming to compute periodic orbits, rather than to generate long time
series, the first order accuracy of the method is not an issue. Once a periodic orbit is
computed, the time step size can be reduced to increase accuracy.
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We symbolically write the dynamical system as

u̇ = f(u), f : RN → RN . (B.1)

where N is the total number of unknowns after discretization, in our case 14×Nx×Ny.
The implicit Euler scheme for time integration is given by

un+1 = un + dt f(un+1) (B.2)

where the subscript represents the step number, dt the step size, and u0 the initial
conditions. This nonlinear equation is solved by Newton iteration:

uk+1
n+1 = ukn+1 + duk, (B.3)

where the superscript denotes the Newton iterate, and duk is the solution to the linear
system (

I− dt
∂f

∂u

∣∣∣∣
uk
n+1

)
duk = dt f(ukn+1)− ukn+1 + ukn, (B.4)

where ∂f/∂u denotes the N ×N Jacobian matrix. Provided that the initial approx-
imation, u0n+1, is close enough to the actual solution of equation (B.2), this iteration
should converge quadratically. This is achieved by making the initial approximation
the result of an explicit Euler step

u0n+1 = un + dt f(un). (B.5)

As we scale up the size of our problems, it becomes the linear solve in equation
(B.4) that takes most of the time. This problem is handled by using GMRES to solve
the linear system. For large time steps, the spectrum of the matrix in Eq. (B.4) is
spread out, and we need to precondition it for iterative solving. We make use ILU,
which has shown to be reliable for this type of problem [12, 9]. If we use more than
one processor, PETSc uses distributed storage for the matrix, and combines ILU with
block Jacobi preconditioning.

B.2.3 Stepping of the first variational equation

The variational equations for the dynamical system are written as

v̇ =
∂f

∂u

∣∣∣∣
u

v, v ∈ RN (B.6)

and must be integrated simultaneously with the dynamical system (B.1). Solving the
variational equations allow us to compute the stability of solutions, and is also an
essential ingredient for the treatment of boundary value problems such as those that
arise in the computation of periodic orbits.

Performing implicit Euler timestepping on the variational equations (B.6) requires
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solutions of the linear problems(
I− dt

∂f

∂u

∣∣∣∣
un+1

)
vn+1 = vn. (B.7)

Since we already have the Jacobian of the dynamical system at timestep n+1, stepping
the variational equations requires only one additional N × N linear solve per time
step.

B.2.4 Equilibria

Having set up the function FormFunction for the right hand side of the dynamical
system, and its Jacobian computation FormJacobian, also used for time integration,
we can set up equilibrium calculations using PETSc’s SNES component with very little
effort.

Equilibrium solutions to the dynamical system (B.1) are solutions that satisfy

f(u) = 0. (B.8)

To solve this, we can set up a Newton iteration scheme

uk+1 = uk + duk (B.9)

with du coming from the solution of the linear system

∂f

∂u

∣∣∣∣
uk

duk = −f(uk). (B.10)

As with the timestepping, if the initial guess is good enough this will converge quadrat-
ically provided that ∂f

∂u

∣∣
uk is nonsingular. Unlike the case of time stepping, though,

we do not always have a way to produce an initial approximation that is good enough.
For stable equilibrium solutions, we can use timestepping to get close to an equilib-
rium, but this will not work for unstable equilibria. One possible solution is using
globally convergent Newton methods. Using such methods we can find equilibria from
very coarse initial data, at the cost of computing many iterations. The line search
algorithm and the trust region approach (see, e.g., [4]) are implemented in the SNES

component.
Stability of equilibrium solutions follows from the spectrum of the Jacobian. Be-

cause of the reflection symmetries of the model, these will mostly appear in groups.
On a square domain, for instance, a single eigenvalue will be associated with up to
eight eigenvectors, with wavenumbers (±kx,±ky) and (±ky,±kx).

As discussed in Section 3.3.2, the model on square periodic domains is also equiv-
ariant under translatations in both dimensions. In the presence of this symmetry, it is
more natural to search for relative equilibria, also called travelling waves. This leads
to the introduction of two extra unknowns, that can be thought of as the wave veloc-
ities, into system (B.8), and an extension by two equations of the associated linear
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system (B.10). However, since we have so far only observed spatially homogeneous
equilibrium states, we will discuss this adjustment in Sec. B.2.5 on periodic solutions.

B.2.5 Periodic solutions

The primary instability in the Liley model is often a Hopf bifurcation, and periodic
orbits have been shown to play an important role in the dynamics of ODE reductions of
the model (e.g. [5, 14]). However, space dependent periodic orbits have not previously
been computed and studied. Using PETSc data structures for bordered matrices, in
conjunction with a MATSHELL, we can solve for periodic orbits based on the time
stepping described in Secs. B.2.2 and B.2.3.

Relative periodic orbits solve the boundary value problem

F (u, t) = ϕ(t, u)− Tabu = 0, (B.11)

where ϕ is the flow of the dynamical system (B.1), t is the period, and Tabu(x, y) =
u(x + a, y + b) the translation operator. Our strategy for solving this equation is
essentially that of Sanchez et al. [13], namely Newton iterations combined with un-
conditioned GMRES iteration. Linearising Eq. (B.11) gives

(Duϕ(u, t)− I) du+ f(ϕ(u, t))dt− ∂u

∂x
da− ∂u

∂y
db = −F (u, t), (B.12)

where Duϕ is a matrix of derivatives of the flow with respect to its initial condition.
Upon convergence, this is the monodromy matrix of the periodic orbit. The result
is N equations in N + 3 unknowns, which must be closed by phase conditions. For
the temporal phase, we opted to handle this by providing a constraint on the Newton
update step:

[Duϕ(u, t)]k,. du+ fk(ϕ(u, t))dt = 0. (B.13)

As Duϕ is a matrix, [Duϕ(u, t)]k,. denotes the k
th row of the matrix Duϕ. As Similar

constraints can be applied to fix the phase in the spatial dimensions as well:

∂u

∂x
du = 0,

∂u

∂y
du = 0. (B.14)

These choices give the bordered system
(Duϕ(u, t)− Tab) f(ϕ(u, t)) −∂u

∂x
−∂u

∂y

[Duϕ(u, t)]k,. fk(ϕ(u, t)) 0 0
∂u
∂x

0 0 0
∂u
∂y

0 0 0




du

dt

da

db

 =


−F (u, t)

0

0

0

 , (B.15)
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the solution to which can be used to update the approximate solution
un+1

tn+1

an+1

bn+1

 =


un

tn

an

bn

+


du

dt

da

db

 . (B.16)

The matrix Duϕ is dense, so we should avoid calculating and storing it explicitly.
Iterative solving of the linear problem, (B.15), requires the computation of matrix-
vector products, which are constructed from the integration of the variational equation
(B.6) with v = du and the vector field f(ϕ(u, t)) at the end point of the approximately
periodic orbit. This method will work well in dispersive regimes of the PDE, i.e., when
most of the eigenvalues of the monodromy matrix are clustered around zero. This
aids the convergence of GMRES, without any preconditioning. Sanchez et al. [13]
provide bounds for the number of GMRES iterations for the Navier-Stokes equation,
and the convergence we observe for the Liley model is qualitatively similar.

B.3 PETSc simulation code initialization files

Similar to the scalar model, all of the initialization files for this code have been
provided and organized in the online mercurial repository for this thesis:
https://bitbucket.org/kegr/uoit_thesis.

B.4 Testing of simulation code

This section summarizes some of the testing that was performed on our PETSc code
for Liley’s model. The timestepping order testing for both the full system and the
linearized equations are supplied in the mercurial repository.

B.4.1 Numerical timestepping error

For timestepping, we choose a fixed discretization and a fixed time integration time,
and vary the size of the time step for. This allows us to compute an approximate
error, as in Figure B.2. Of all of the timestepping methods shown, their computed
order match theoretical prediction at least in some region.

B.4.2 Accuracy testing

Determining that our code is capable of producing correct results is not as straight-
forward as the above finite difference testing. To do this, we must compare certain
computations of the PETSc code with results demonstrated in past literature.

The literature chosen was that of Bojak & Liley [3], with the problem that the

https://bitbucket.org/kegr/uoit_thesis
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Figure B.2: Relative differences computed after a time integration of 100ms using
various timestepping methods. State is initialized with a space-dependent field that
will result in varying dynamics (i.e., not an equilibrium). With the final state written
as a function of time step, u(dt), this relative error is computed by

err(dt) =
||u(2dt)− u(dt)||2

||u(dt)||2
,

with ∥ · ∥2 denoting the 2-norm of its vector entry. Note that the implicit methods
took much longer to integrate than the explicit, and thus their dt do not get as small.
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results are only expressed graphically. To reproduce the results we first wrote some
(more simple) AUTO-07p code that could reproduce the data of the SHE and SHPO
curves in the right side of Figure 5.3. Confirming that both the equilibrium and
periodic orbit curves look as in the published figure.

We then compare the data of our PETSc SHE continuation curve with the data
from the AUTO-07p code, with results (not included here) being equivalent up to 7
digits.

The PETSc code is further verified, qualtitatively, by observing the principle in-
stability of the SHE in the correct parameter region indicated from the published
article (right side of Figure 5.4). As the article does not include a precise calculation
of this instability, this is the best we can do.

Combining the accuracy testing on stationary states with the order calculations
for various timestepping methods, gives us high confidence that our implementation
of Liley’s model in PETSc is correct.
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